0000000000172001

AUTHOR

F U Abuova

showing 5 related works from this author

Stabilization of primary mobile radiation defects in MgF2 crystals

2016

Abstract Non-radiative decay of the electronic excitations (excitons) into point defects ( F – H pairs of Frenkel defects) is main radiation damage mechanism in many ionic (halide) solids. Typical time scale of the relaxation of the electronic excitation into a primary, short-lived defect pair is about 1–50 ps with the quantum yield up to 0.2–0.8. However, only a small fraction of these primary defects are spatially separated and survive after transformation into stable, long-lived defects. The survival probability (or stable defect accumulation efficiency) can differ by orders of magnitude, dependent on the material type; e.g. ∼10% in alkali halides with f.c.c. or b.c.c. structure, 0.1% in…

010302 applied physicsNuclear and High Energy PhysicsMaterials scienceExcitonRelaxation (NMR)Quantum yieldIonic bonding02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesCrystallographic defectMolecular physicsOrders of magnitude (time)0103 physical sciencesRadiation damage0210 nano-technologyInstrumentationExcitationNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

Ab initiocalculations of theFcenters in MgF2bulk and on the (001) surface

2012

We present and discuss the results of atomic and electronic structure calculations of the F centers in MgF2 bulk and on the (001) surface. The calculations are based on the B3PW Hartree–Fock and density functional theory hybrid exchange-correlation functional. Most of the electronic density of a missing fluorine ion is localized in the bulk vacancy and a little bit less—in a surface vacancy. It is shown that the electronic F center is a deep donor. The lattice distortion and defect formation energy on the neutral (001) surface and in the bulk are also compared.

Materials scienceHartree–Fock methodElectronic structureCondensed Matter PhysicsCrystallographic defectAtomic and Molecular Physics and OpticsIonAb initio quantum chemistry methodsVacancy defectPhysics::Atomic and Molecular ClustersDensity functional theoryAtomic physicsMathematical PhysicsElectronic densityPhysica Scripta
researchProduct

Ab initio calculations of pure and Co+2-doped MgF2 crystals

2020

This research was partly supported by the Kazakhstan Science Project № AP05134367«Synthesis of nanocrystals in track templates of SiO2/Si for sensory, nano- and optoelectronic applications», as well as by Latvian Research Council project lzp-2018/1-0214. Calculations were performed on Super Cluster (LASC) in the Institute of Solid State Physics (ISSP) of the University of Latvia. Authors are indebted to S. Piskunov for stimulating discussions.

AB INITIO CALCULATIONSNuclear and High Energy PhysicsMaterials scienceSpin statesBand gapAb initioENERGY GAP02 engineering and technologyFLUORINE COMPOUNDS01 natural sciences7. Clean energyMolecular physicsAb initio quantum chemistry methodsCobalt dopant0103 physical sciencesPhysics::Atomic and Molecular Clusters:NATURAL SCIENCES:Physics [Research Subject Categories]MgF2010306 general physicsFluorideInstrumentationCOBALT DOPANTSDopantCRYSTAL ATOMIC STRUCTUREDopingCOBALT COMPOUNDSMAGNESIUM COMPOUNDSDOPANT ENERGY LEVELS021001 nanoscience & nanotechnologyVIBRATIONAL STRUCTURESCALCULATIONSCRYSTALSGROUND STATELinear combination of atomic orbitalsCELL PROLIFERATIONAb initioGROUND STATE LEVELS0210 nano-technologyGround state
researchProduct

First‐principles modeling of the H color centers in MgF 2 crystals

2012

MgF2 with a rutile structure is important wide-gap optical material with numerous applications. We present and discuss the results of calculations for basic hole defects – interstitial F atoms (called also the colour H centers). This study is based on the large scale ab initio DFT calculations using hybrid B3PW exchange-correlation functional as implemented into CRYSTAL computer code. The electronic structure, atomic geometry, charge density distribution are calculated and compared with similar defects in CaF2 fluorite. It is shown that the H centers oriented nearly parallel to the (110) axis are energetically more favourable than those oriented along the (001) axis, in agreement with exper…

CrystalCrystallographyRutileChemistryOptical materialsAb initioCharge densityElectronic structureCondensed Matter PhysicsCrystallographic defectMolecular physicsFluoritephysica status solidi c
researchProduct

Ab initiocalculations of theHcenters in MgF2crystals

2012

MgF2 with rutile structure is important wide-gap optical material with numerous applications. We present and discuss the results of calculations for basic hole defects - interstitial F atoms (called also the colour H centres). This study is based on the large scale ab initio DFT calculations using hybrid B3PW exchange-correlation functional as implemented into CRYSTAL computer code. The electronic structure, atomic geometry, charge density distribution are calculated and discussed.

CrystalCondensed Matter::Materials ScienceAb initio quantum chemistry methodsChemistryAb initioCharge densityElectronic structureCrystal structureSIESTA (computer program)Atomic physicsCrystallographic defectIOP Conference Series: Materials Science and Engineering
researchProduct