0000000000172193

AUTHOR

Kerstin Schepanski

0000-0002-1027-6786

showing 4 related works from this author

Dust mobilization and transport in the northern Sahara during SAMUM 2006 – a meteorological overview

2009

The SAMUM field campaign in southern Morocco in May/June 2006 provides valuable data to study the emission, and the horizontal and vertical transports of mineral dust in the Northern Sahara. Radiosonde and lidar observations show differential advection of air masses with different characteristics during stable nighttime conditions and up to 5-km deep vertical mixing in the strongly convective boundary layer during the day. Lagrangian and synoptic analyses of selected dust periods point to a topographic channel from western Tunisia to central Algeria as a dust source region. Significant emission events are related to cold surges from the Mediterranean in association with eastward passing upp…

LidarAtmospheric ScienceSaharan dustMeteorology010504 meteorology & atmospheric sciencesAtmosphärische Spurenstoffe010501 environmental sciencesMineral dustConvective Boundary Layer01 natural scienceslaw.invention010305 fluids & plasmasSAMUMHabooblaw13. Climate actionClimatologySynoptic scale meteorology0103 physical sciencesRadiosondeThunderstormEnvironmental scienceAeolian processesAir mass0105 earth and related environmental sciencesTellus B
researchProduct

Simulations of convectively-driven density currents in the Atlas region using a regional model: Impacts on dust emission and sensitivity to horizonta…

2009

[1] During the SAMUM field campaign in southern Morocco in May and June 2006 density currents generated by evaporative cooling after convective precipitation were frequently observed at the Sahara side of the Atlas Mountain chain. The associated strong surface cold-air outflow during such events has been observed to lead to dust mobilization in the foothills. Here a regional model system is used to simulate a density current case on 3 June 2006 and the subsequent dust emission. The model studies are performed with different parameterization schemes for convection, and with different horizontal model grid resolutions to examine to which extent the model system can be used for reproducing dus…

ConvectionAtmospheric Science010504 meteorology & atmospheric sciencesMeteorologySoil ScienceAquatic Science010502 geochemistry & geophysicsOceanographyAtmospheric sciences01 natural sciencesGeochemistry and PetrologyEarth and Planetary Sciences (miscellaneous)Physics::Atmospheric and Oceanic Physics0105 earth and related environmental sciencesEarth-Surface ProcessesWater Science and TechnologyEcologyAtlas (topology)PaleontologyForestryGeophysicsMountain chain13. Climate actionSpace and Planetary ScienceOutflowRegional modelCurrent densityParametrizationGeologyEvaporative cooler
researchProduct

Regional Saharan dust modelling during the SAMUM 2006 campaign

2011

The regional dust model system LM-MUSCAT-DES was developed in the framework of the SAMUM project. Using the unique comprehensive data set of near-source dust properties during the 2006 SAMUM field campaign, the performance of the model system is evaluated for two time periods in May and June 2006. Dust optical thicknesses, number size distributions and the position of the maximum dust extinction in the vertical profiles agree well with the observations. However, the spatio-temporal evolution of the dust plumes is not always reproduced due to inaccuracies in the dust source placement by the model. While simulated winds and dust distributions are well matched for dust events caused by dry syn…

Atmospheric ScienceSaharan dust010504 meteorology & atmospheric sciencesMeteorologyExtinction (astronomy)Air pollutionAstrophysics::Cosmology and Extragalactic Astrophysics010501 environmental sciencesMineral dustmedicine.disease_causeAtmospheric sciences01 natural sciencesTropospherePanachemedicineAstrophysics::Solar and Stellar AstrophysicsAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesLidarAtmosphärische SpurenstoffeAerosolSAMUMLidar13. Climate actionAeolian processesEnvironmental scienceAstrophysics::Earth and Planetary AstrophysicsLM-MUSCATTellus B
researchProduct

Advances in understanding mineral dust and boundary layer processes over the Sahara from Fennec aircraft observations

2015

Abstract. The Fennec climate programme aims to improve understanding of the Saharan climate system through a synergy of observations and modelling. We present a description of the Fennec airborne observations during 2011 and 2012 over the remote Sahara (Mauritania and Mali) and the advances in the understanding of mineral dust and boundary layer processes they have provided. Aircraft instrumentation aboard the UK FAAM BAe146 and French SAFIRE (Service des Avions Français Instrumentés pour la Recherche en Environnement) Falcon 20 is described, with specific focus on instrumentation specially developed for and relevant to Saharan meteorology and dust. Flight locations, aims and associated met…

Atmospheric Science010504 meteorology & atmospheric sciencesMeteorologyPlanetary boundary layerCONVECTIVE SYSTEMEnvironmental Sciences & EcologyAEROSOL OPTICAL-PROPERTIESMineral dust010502 geochemistry & geophysicsAtmospheric sciences01 natural sciencesCOARSE MODElcsh:ChemistryHaboobDust storm0201 Astronomical and Space SciencesMeteorology & Atmospheric SciencesSatellite imagerySOUTHERN MOROCCO0105 earth and related environmental sciences[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph]GBScience & TechnologyHEAT LOWAIRBORNE OBSERVATIONSRETRIEVAL PRODUCTSOzone depletionlcsh:QC1-999PARTICLE-SIZEAERONETBoundary layerlcsh:QD1-99913. Climate action[SDU.STU.CL]Sciences of the Universe [physics]/Earth Sciences/ClimatologyPhysical SciencesWEST-AFRICAN MONSOONEnvironmental science0401 Atmospheric SciencesNORTH-ATLANTIC OCEANLife Sciences & Biomedicinelcsh:PhysicsEnvironmental SciencesAtmospheric Chemistry and Physics
researchProduct