0000000000172196

AUTHOR

Bernd Heinold

showing 11 related works from this author

Dust mobilization and transport in the northern Sahara during SAMUM 2006 – a meteorological overview

2009

The SAMUM field campaign in southern Morocco in May/June 2006 provides valuable data to study the emission, and the horizontal and vertical transports of mineral dust in the Northern Sahara. Radiosonde and lidar observations show differential advection of air masses with different characteristics during stable nighttime conditions and up to 5-km deep vertical mixing in the strongly convective boundary layer during the day. Lagrangian and synoptic analyses of selected dust periods point to a topographic channel from western Tunisia to central Algeria as a dust source region. Significant emission events are related to cold surges from the Mediterranean in association with eastward passing upp…

LidarAtmospheric ScienceSaharan dustMeteorology010504 meteorology & atmospheric sciencesAtmosphärische Spurenstoffe010501 environmental sciencesMineral dustConvective Boundary Layer01 natural scienceslaw.invention010305 fluids & plasmasSAMUMHabooblaw13. Climate actionClimatologySynoptic scale meteorology0103 physical sciencesRadiosondeThunderstormEnvironmental scienceAeolian processesAir mass0105 earth and related environmental sciencesTellus B
researchProduct

EARLINET observations of the 14-22-may long-range dust transport event during SAMUM 2006: validation of results from dust transport modelling

2009

We observed a long-range transport event of mineral dust from North Africa to South Europe during the Saharan Mineral Dust Experiment (SAMUM) 2006. Geometrical and optical properties of that dust plume were determined with Sun photometer of the Aerosol Robotic Network (AERONET) and Raman lidar near the North African source region, and with Sun photometers of AERONET and lidars of the European Aerosol Research Lidar Network (EARLINET) in the far field in Europe. Extinction-to-backscatter ratios of the dust plume over Morocco and Southern Europe do not differ. Ångstr¨om exponents increase with distance from Morocco. We simulated the transport, and geometrical and optical properties of the dus…

Atmospheric ScienceEnvironmental EngineeringAerosol Robotic Network (AERONET)010504 meteorology & atmospheric sciencesMeteorologySaharan dustAEROSOL OPTICAL-PROPERTIES010501 environmental sciencesMineral dust01 natural sciencesMineral dustSun photometerLIDARSouth EuropeSKY RADIANCE MEASUREMENTSNETWORKAerosolOptical depth0105 earth and related environmental sciencesOptical propertiesEuropean Aerosol Research Lidar Network (EARLINET)Geometrical propertiesAtmosphärische SpurenstoffeDustNorth AfricaAerosolAERONETPlumeSAMUMLidarEnvironmental scienceAeolian processesEngineering and TechnologyDust aerosolsSaharan Mineral Dust Experiment (SAMUM)Sun photometersAERONET
researchProduct

Simulations of convectively-driven density currents in the Atlas region using a regional model: Impacts on dust emission and sensitivity to horizonta…

2009

[1] During the SAMUM field campaign in southern Morocco in May and June 2006 density currents generated by evaporative cooling after convective precipitation were frequently observed at the Sahara side of the Atlas Mountain chain. The associated strong surface cold-air outflow during such events has been observed to lead to dust mobilization in the foothills. Here a regional model system is used to simulate a density current case on 3 June 2006 and the subsequent dust emission. The model studies are performed with different parameterization schemes for convection, and with different horizontal model grid resolutions to examine to which extent the model system can be used for reproducing dus…

ConvectionAtmospheric Science010504 meteorology & atmospheric sciencesMeteorologySoil ScienceAquatic Science010502 geochemistry & geophysicsOceanographyAtmospheric sciences01 natural sciencesGeochemistry and PetrologyEarth and Planetary Sciences (miscellaneous)Physics::Atmospheric and Oceanic Physics0105 earth and related environmental sciencesEarth-Surface ProcessesWater Science and TechnologyEcologyAtlas (topology)PaleontologyForestryGeophysicsMountain chain13. Climate actionSpace and Planetary ScienceOutflowRegional modelCurrent densityParametrizationGeologyEvaporative cooler
researchProduct

ML-CIRRUS: The Airborne Experiment on Natural Cirrus and Contrail Cirrus with the High-Altitude Long-Range Research Aircraft HALO

2017

Abstract The Midlatitude Cirrus experiment (ML-CIRRUS) deployed the High Altitude and Long Range Research Aircraft (HALO) to obtain new insights into nucleation, life cycle, and climate impact of natural cirrus and aircraft-induced contrail cirrus. Direct observations of cirrus properties and their variability are still incomplete, currently limiting our understanding of the clouds’ impact on climate. Also, dynamical effects on clouds and feedbacks are not adequately represented in today’s weather prediction models. Here, we present the rationale, objectives, and selected scientific highlights of ML-CIRRUS using the G-550 aircraft of the German atmospheric science community. The first combi…

Atmospheric Science010504 meteorology & atmospheric sciencesMeteorologysatellitecontrail cirruscirrus010501 environmental sciences01 natural sciencesmodellingML-CIRRUSRange (aeronautics)ddc:550Wolkenphysik0105 earth and related environmental sciencesLidarFernerkundung der AtmosphäreVerkehrsmeteorologieAtmosphärische SpurenstoffeTrace gasAerosolLidarMiddle latitudesHALOEnvironmental scienceCirrusSatelliteHaloaircraft measurementsBulletin of the American Meteorological Society
researchProduct

Synoptic development during the ACLOUD/PASCAL field campaign near Svalbard in spring 2017

2018

Abstract. The two concerted field campaigns Arctic CLoud Observations Using airborne measurements during polar Day (ACLOUD) and the Physical feedbacks of Arctic planetary boundary level Sea ice, Cloud and AerosoL (PASCAL) took place near Svalbard from 23 May to 26 June 2017. They were focused on studying Arctic mixed-phase clouds and involved observations from two airplanes (ACLOUD), an icebreaker (PASCAL), as well as surface-based stations, a tethered balloon, and satellites. Here, we present the synoptic development during the 35 day period of the campaigns, using classical near-surface and upper-air meteorological observations, as well as operational satellite and model data. Over the ca…

Warm frontgeographygeography.geographical_feature_categoryArctic13. Climate actionClimatologyCloud coverPeriod (geology)Polar amplificationSea iceEnvironmental scienceSatelliteAerosol
researchProduct

The Arctic Cloud Puzzle: Using ACLOUD/PASCAL Multiplatform Observations to Unravel the Role of Clouds and Aerosol Particles in Arctic Amplification

2019

A consortium of polar scientists combined observational forces in a field campaign of unprecedented complexity to uncover the secrets of clouds and their role in Arctic amplification. Two research aircraft, an icebreaker research vessel, an ice-floe camp including an instrumented tethered balloon, and a permanent ground-based measurement station were employed in this endeavour. Clouds play an important role in Arctic amplification. This term represents the recently observed enhanced warming of the Arctic relative to the global increase of near-surface air temperature. However, there are still important knowledge gaps regarding the interplay between Arctic clouds and aerosol particles, surfa…

Atmospheric Science010504 meteorology & atmospheric sciencesbusiness.industryCloud computingPascal (programming language)010502 geochemistry & geophysics01 natural sciencesAerosolThe arcticEarth sciencesClimatologyddc:550Polar amplificationEnvironmental sciencebusinesscomputer0105 earth and related environmental sciencescomputer.programming_languageBulletin of the American Meteorological Society
researchProduct

Regional Saharan dust modelling during the SAMUM 2006 campaign

2011

The regional dust model system LM-MUSCAT-DES was developed in the framework of the SAMUM project. Using the unique comprehensive data set of near-source dust properties during the 2006 SAMUM field campaign, the performance of the model system is evaluated for two time periods in May and June 2006. Dust optical thicknesses, number size distributions and the position of the maximum dust extinction in the vertical profiles agree well with the observations. However, the spatio-temporal evolution of the dust plumes is not always reproduced due to inaccuracies in the dust source placement by the model. While simulated winds and dust distributions are well matched for dust events caused by dry syn…

Atmospheric ScienceSaharan dust010504 meteorology & atmospheric sciencesMeteorologyExtinction (astronomy)Air pollutionAstrophysics::Cosmology and Extragalactic Astrophysics010501 environmental sciencesMineral dustmedicine.disease_causeAtmospheric sciences01 natural sciencesTropospherePanachemedicineAstrophysics::Solar and Stellar AstrophysicsAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesLidarAtmosphärische SpurenstoffeAerosolSAMUMLidar13. Climate actionAeolian processesEnvironmental scienceAstrophysics::Earth and Planetary AstrophysicsLM-MUSCATTellus B
researchProduct

Orographic Effects and Evaporative Cooling along a Subtropical Cold Front: The Case of the Spectacular Saharan Dust Outbreak of March 2004

2012

Abstract On 2 March 2004 a marked upper-level trough and an associated surface cold front penetrated into the Sahara. High winds along and behind this frontal system led to an extraordinary, large-scale, and long-lived dust outbreak, accompanied by significant precipitation over parts of Algeria, Tunisia, and Libya. This paper uses sensitivity simulations with the limited-area model developed by the Consortium for Small-Scale Modeling (COSMO) together with analysis data and surface observations to test several hypotheses on the dynamics of this case proposed in previous work. It is demonstrated that air over central Algeria is cooled by evaporation of frontal precipitation, substantially en…

Atmospheric ScienceLeading edgeCold frontMountain chainClimatologyEnvironmental scienceSubtropicsMineral dustAtmospheric sciencesTrough (meteorology)Evaporative coolerOrographic liftMonthly Weather Review
researchProduct

Meteorological conditions during the ACLOUD/PASCAL field campaign near Svalbard in early summer 2017

2018

Abstract. The two concerted field campaigns, Arctic CLoud Observations Using airborne measurements during polar Day (ACLOUD) and the Physical feedbacks of Arctic planetary boundary level Sea ice, Cloud and AerosoL (PASCAL), took place near Svalbard from 23 May to 26 June 2017. They were focused on studying Arctic mixed-phase clouds and involved observations from two airplanes (ACLOUD), an icebreaker (PASCAL) and a tethered balloon, as well as ground-based stations. Here, we present the synoptic development during the 35-day period of the campaigns, using near-surface and upper-air meteorological observations, as well as operational satellite, analysis, and reanalysis data. Over the campaign…

Atmospheric Sciencegeographygeography.geographical_feature_category010504 meteorology & atmospheric sciencesAdvectionCloud cover010502 geochemistry & geophysics01 natural scienceslcsh:QC1-999Aerosollcsh:ChemistryWarm frontArcticlcsh:QD1-99913. Climate actionClimatologyPeriod (geology)Sea iceEnvironmental scienceSatelliteInstitut für Geowissenschaftenlcsh:Physics0105 earth and related environmental sciences
researchProduct

On the direct and semidirect effects of Saharan dust over Europe: A modeling study

2007

[1] On the basis of a new regional dust model system, the sensitivity of radiative forcing to dust aerosol properties and the impact on atmospheric dynamics were investigated. Uncertainties in optical properties were related to uncertainties in the complex spectral refractive index of mineral dust. The climatological-based distribution of desert-type aerosol in the radiation scheme of the nonhydrostatic regional model LM was replaced by dust optical properties from spectral refractive indices, derived from in situ measurements, remote sensing, bulk measurements, and laboratory experiments, employing Mie theory. The model computes changes in the solar and terrestrial irradiance from a spatia…

Atmospheric ScienceMeteorologyMie scatteringIrradianceSoil ScienceForcing (mathematics)Aquatic ScienceMineral dustOceanographyAtmospheric sciencesAtmosphereGeochemistry and PetrologyEarth and Planetary Sciences (miscellaneous)Radiative transferAstrophysics::Solar and Stellar AstrophysicsAstrophysics::Galaxy AstrophysicsEarth-Surface ProcessesWater Science and TechnologyEcologyPaleontologyForestryRadiative forcingAerosolGeophysicsSpace and Planetary ScienceEnvironmental scienceAstrophysics::Earth and Planetary AstrophysicsJournal of Geophysical Research: Atmospheres
researchProduct

The impact of mineral dust on cloud formation during the Saharan dust event in April 2014 over Europe

2018

A regional modeling study on the impact of desert dust on cloud formation is presented for a major Saharan dust outbreak over Europe from 2 to 5 April 2014. The dust event coincided with an extensive and dense cirrus cloud layer, suggesting an influence of dust on atmospheric ice nucleation. Using interactive simulation with the regional dust model COSMO-MUSCAT, we investigate cloud and precipitation representation in the model and test the sensitivity of cloud parameters to dust–cloud and dust–radiation interactions of the simulated dust plume. We evaluate model results with ground-based and spaceborne remote sensing measurements of aerosol and cloud properties, as well as the in situ meas…

Earth sciencesddc:550
researchProduct