0000000000172445

AUTHOR

ÁNgel Arroyo

0000-0002-3561-6257

showing 5 related works from this author

Asymptotic Lipschitz regularity for tug-of-war games with varying probabilities

2018

We prove an asymptotic Lipschitz estimate for value functions of tug-of-war games with varying probabilities defined in $\Omega\subset \mathbb R^n$. The method of the proof is based on a game-theoretic idea to estimate the value of a related game defined in $\Omega\times \Omega$ via couplings.

osittaisdifferentiaaliyhtälötPure mathematicsComputer Science::Computer Science and Game TheoryTug of war010102 general mathematicslocal Lipschitz estimatesLipschitz continuity01 natural sciencesnormalized p(x)-laplaciandynamic programming principle010104 statistics & probabilityMathematics - Analysis of PDEsFOS: Mathematicspeliteoria91A05 91A15 91A50 35B65 35J60 35J92stochastic games0101 mathematicsValue (mathematics)AnalysisAnalysis of PDEs (math.AP)Mathematicsstokastiset prosessit
researchProduct

On a class of singular measures satisfying a strong annular decay condition

2018

A metric measure space $(X,d,\mu)$ is said to satisfy the strong annular decay condition if there is a constant $C>0$ such that $$ \mu\big(B(x,R)\setminus B(x,r)\big)\leq C\, \frac{R-r}{R}\, \mu (B(x,R)) $$ for each $x\in X$ and all $0<r \leq R$. If $d_{\infty}$ is the distance induced by the $\infty$-norm in $\mathbb{R}^N$, we construct examples of singular measures $\mu$ on $\mathbb{R}^N$ such that $(\mathbb{R}^N, d_{\infty},\mu)$ satisfies the strong annular decay condition.

PhysicsClass (set theory)Applied MathematicsGeneral MathematicsMetric Geometry (math.MG)Space (mathematics)metriset avaruudetMeasure (mathematics)Bernoulli productfunktioteoriaCombinatoricsmetric measure spaceMathematics - Metric Geometryannular decay conditiondoubling measureFOS: Mathematicsmittateoria
researchProduct

Hölder regularity for stochastic processes with bounded and measurable increments

2022

We obtain an asymptotic Hölder estimate for expectations of a quite general class of discrete stochastic processes. Such expectations can also be described as solutions to a dynamic programming principle or as solutions to discretized PDEs. The result, which is also generalized to functions satisfying Pucci-type inequalities for discrete extremal operators, is a counterpart to the Krylov-Safonov regularity result in PDEs. However, the discrete step size $\varepsilon$ has some crucial effects compared to the PDE setting. The proof combines analytic and probabilistic arguments.

todennäköisyyslaskentamatematiikkaApplied Mathematicsp-harmoniousProbability (math.PR)tug-of-war gamesstochastic processdynamic programming principlelocal Hölder estimatesFOS: Mathematicsequations in nondivergence formp-Laplace35B65 35J15 60H30 60J10 91A50Mathematical PhysicsAnalysisAnalysis of PDEs (math.AP)stokastiset prosessit
researchProduct

Local regularity estimates for general discrete dynamic programming equations

2022

We obtain an analytic proof for asymptotic H\"older estimate and Harnack's inequality for solutions to a discrete dynamic programming equation. The results also generalize to functions satisfying Pucci-type inequalities for discrete extremal operators. Thus the results cover a quite general class of equations.

local Hölder estimateosittaisdifferentiaaliyhtälötABP-estimateApplied MathematicsGeneral Mathematicsp-LaplacianMathematics::Analysis of PDEs35B65 35J15 35J92 91A50elliptic non-divergence form partial differential equation with bounded and measurable coefficientsdynamic programming principleMathematics - Analysis of PDEsHarnack's inequalitytug-of-war with noiseFOS: MathematicsPucci extremal operatorpeliteoriaepäyhtälötAnalysis of PDEs (math.AP)
researchProduct

Asymptotic Hölder regularity for the ellipsoid process

2020

We obtain an asymptotic Hölder estimate for functions satisfying a dynamic programming principle arising from a so-called ellipsoid process. By the ellipsoid process we mean a generalization of the random walk where the next step in the process is taken inside a given space dependent ellipsoid. This stochastic process is related to elliptic equations in non-divergence form with bounded and measurable coefficients, and the regularity estimate is stable as the step size of the process converges to zero. The proof, which requires certain control on the distortion and the measure of the ellipsoids but not continuity assumption, is based on the coupling method.

equations in non-divergence formControl and OptimizationDynamic programming principleGeneralizationSpace (mathematics)01 natural sciencesMeasure (mathematics)local Hölder estimatespeliteoriastochastic games0101 mathematicsstokastiset prosessitMathematicsosittaisdifferentiaaliyhtälötStochastic process010102 general mathematicsMathematical analysisRandom walkEllipsoidcoupling of stochastic processes010101 applied mathematicsDistortion (mathematics)Computational Mathematicsellipsoid processControl and Systems EngineeringBounded functionESAIM: Control, Optimisation and Calculus of Variations
researchProduct