Asymptotic Lipschitz regularity for tug-of-war games with varying probabilities
We prove an asymptotic Lipschitz estimate for value functions of tug-of-war games with varying probabilities defined in $\Omega\subset \mathbb R^n$. The method of the proof is based on a game-theoretic idea to estimate the value of a related game defined in $\Omega\times \Omega$ via couplings.
On a class of singular measures satisfying a strong annular decay condition
A metric measure space $(X,d,\mu)$ is said to satisfy the strong annular decay condition if there is a constant $C>0$ such that $$ \mu\big(B(x,R)\setminus B(x,r)\big)\leq C\, \frac{R-r}{R}\, \mu (B(x,R)) $$ for each $x\in X$ and all $0<r \leq R$. If $d_{\infty}$ is the distance induced by the $\infty$-norm in $\mathbb{R}^N$, we construct examples of singular measures $\mu$ on $\mathbb{R}^N$ such that $(\mathbb{R}^N, d_{\infty},\mu)$ satisfies the strong annular decay condition.
Hölder regularity for stochastic processes with bounded and measurable increments
We obtain an asymptotic Hölder estimate for expectations of a quite general class of discrete stochastic processes. Such expectations can also be described as solutions to a dynamic programming principle or as solutions to discretized PDEs. The result, which is also generalized to functions satisfying Pucci-type inequalities for discrete extremal operators, is a counterpart to the Krylov-Safonov regularity result in PDEs. However, the discrete step size $\varepsilon$ has some crucial effects compared to the PDE setting. The proof combines analytic and probabilistic arguments.
Local regularity estimates for general discrete dynamic programming equations
We obtain an analytic proof for asymptotic H\"older estimate and Harnack's inequality for solutions to a discrete dynamic programming equation. The results also generalize to functions satisfying Pucci-type inequalities for discrete extremal operators. Thus the results cover a quite general class of equations.
Asymptotic Hölder regularity for the ellipsoid process
We obtain an asymptotic Hölder estimate for functions satisfying a dynamic programming principle arising from a so-called ellipsoid process. By the ellipsoid process we mean a generalization of the random walk where the next step in the process is taken inside a given space dependent ellipsoid. This stochastic process is related to elliptic equations in non-divergence form with bounded and measurable coefficients, and the regularity estimate is stable as the step size of the process converges to zero. The proof, which requires certain control on the distortion and the measure of the ellipsoids but not continuity assumption, is based on the coupling method.