0000000000172477

AUTHOR

Li Lin Yang

Top quark pair production at complete NLO accuracy with NNLO+NNLL′ corrections in QCD

We describe predictions for top-quark pair differential distributions at hadron colliders, which combine state-of-the-art NNLO QCD calculations and NLO electroweak corrections together with double resummation at NNLL$'$ accuracy of threshold logarithms and small-mass logarithms. This is the first time that such a combination has appeared in the literature. Numerical results are presented for the invariant-mass distribution, the transverse-momentum distribution as well as rapidity distributions.

research product

NNLL momentum-space resummation for stop-pair production at the LHC

If supersymmetry near the TeV scale is realized in Nature, the pair production of scalar top squarks is expected to be observable at the Large Hadron Collider. Recently, effective field-theory methods were employed to obtain approximate predictions for the cross section for this process, which include soft-gluon emission effects up to next-to-next-to-leading order (NNLO) in perturbation theory. In this work we employ the same techniques to resum soft-gluon emission effects to all orders in perturbation theory and with next-to-next-to-logarithmic (NNLL) accuracy. We analyze the effects of NNLL resummation on the stop-pair production cross section by obtaining NLO+NNLL predictions in pair inv…

research product

Precision predictions for the tt¯ production cross section at hadron colliders

Abstract We make use of recent results in effective theory and higher-order perturbative calculations to improve the theoretical predictions of the top-quark pair production cross section at hadron colliders. In particular, we supplement the fixed-order NLO calculation with higher-order corrections from soft gluon resummation at NNLL accuracy. Uncertainties due to power corrections to the soft limit are estimated by combining results from single-particle inclusive and pair invariant-mass kinematics. We present our predictions as functions of the top-quark mass in both the pole scheme and the M S ¯ scheme. We also discuss the merits of using threshold masses as an alternative, and calculate …

research product

Soft Gluon Resummation in t anti-t Production at Hadron Colliders

research product

Measuring the Higgs boson self-coupling at the LHC using ratios of cross sections

We consider the ratio between the double and single Higgs production cross sections and examine the prospect of measuring the trilinear Higgs self-coupling using this observable. Such a ratio has a reduced theoretical (scale) uncertainty than the double Higgs cross section. We find that with 600/fb, the 14 TeV LHC can constraint the trilinear Higgs self coupling to be positive, and with 3000/fb one could measure it with a +30 % {-20 %}) accuracy.

research product

Origin of the Large Perturbative Corrections to Higgs Production at Hadron Colliders

The very large K-factor for Higgs-boson production at hadron colliders is shown to result from enhanced perturbative corrections of the form (C_A\pi\alpha_s)^n, which arise in the analytic continuation of the gluon form factor to time-like momentum transfer. These terms are resummed to all orders in perturbation theory using the renormalization group. After the resummation, the K-factor for the production of a light Higgs boson at the LHC is reduced to a value close to 1.3.

research product

Threshold expansion at order αs4 for the tt¯ invariant mass distribution at hadron colliders

Abstract We calculate the leading O ( α s 4 ) contributions to the invariant mass distribution of top-quark pairs produced at the Tevatron and LHC, in the limit where the invariant mass of the t t ¯ pair approaches the partonic center-of-mass energy. Our results determine at NNLO in α s the coefficients of all singular plus distributions and scale-dependent logarithms in the differential partonic cross sections for q q ¯ , g g → t t ¯ + X . A numerical analysis showing the effects of the NNLO corrections on the central values and scale dependence of the invariant mass distribution is performed. The NNLO corrections are found to significantly enhance the cross section and reduce the perturba…

research product

Higgs boson self-coupling measurements using ratios of cross sections

We consider the ratio of cross sections of double-to-single Higgs boson production at the Large Hadron Collider at 14 TeV. Since both processes possess similar higher-order corrections, leading to a cancellation of uncertainties in the ratio, this observable is well-suited to constrain the trilinear Higgs boson self-coupling. We consider the scale variation, parton density function uncertainties and conservative estimates of experimental uncertainties, applied to the viable decay channels, to construct expected exclusion regions. We show that the trilinear self-coupling can be constrained to be positive with a 600/fb LHC dataset at 95% confidence level. Moreover, we demonstrate that we expe…

research product

Top-Quark Pair Production Beyond Next-to-Leading Order

We report on recent calculations of the differential cross section for top-quark pair production at hadron colliders. The results are differential with respect to the top-pair invariant mass and to the partonic scattering angle. In these calculations, which were carried out by employing soft-collinear effective theory techniques, we resummed threshold logarithms up to next-to-next-to-leading logarithmic order. Starting from the differential cross section, it is possible to obtain theoretical predictions for the invariant-mass distribution and the total cross section. We summarize here our results for these observables, and we compare them with the results obtained from different calculation…

research product

Top-pair forward-backward asymmetry beyond next-to-leading order

We make use of recent results in effective theory and higher-order perturbative calculations to improve the theoretical predictions of the QCD contribution to the top-quark pair production forward-backward asymmetry at the Tevatron. In particular, we supplement the fixed-order next-to-leading order calculation with higher-order corrections from soft-gluon resummation at next-to next-to-leading order accuracy performed in two different kinematic schemes, which allows us to make improved predictions for the asymmetry in the $p\overline{p}$ and $t\overline{t}$ rest frames as a function of the rapidity and invariant mass of the $t\overline{t}$ pair. Furthermore, we provide binned results which …

research product

Approximate NNLO predictions for the stop-pair production cross section at the LHC

If the minimal supersymmetric standard model at scales of around 1 TeV is realized in nature, the total top-squark pair production cross section should be measurable at the CERN Large Hadron Collider. In this work we present precise predictions for this observable, which are based upon approximate NNLO formulas obtained using soft-collinear effective theory methods.

research product

Higgs boson pair production in the D = 6 extension of the SM

We derive the constraints that can be imposed on the dimension-6 effective theory extension of the Standard Model, using gluon fusion-initiated Higgs boson pair production at the LHC. We use a realistic analysis focussing on the hh→(bb¯¯)(τ+τ−) final state, including initial-state radiation and non-perturbative effects. We include the statistical uncertainties on the signal rates as well as conservative estimates of the theoretical uncertainties. We first consider a theory containing only modifications of the trilinear coupling, through a c6λ H6/v2 Lagrangian term, and then examine the full parameter space of the effective theory, incorporating current bounds obtained through single Higgs b…

research product

NNLL momentum-space threshold resummation in direct top quark production at the LHC

We update the theoretical precision of the total cross section for direct top quark production at the LHC by extending the threshold resummation to the next-to-next-to-leading logarithmic accuracy.

research product

Infrared Singularities and Soft Gluon Resummation with Massive Partons

Infrared divergences of QCD scattering amplitudes can be derived from an anomalous dimension matrix, which is also an essential ingredient for the resummation of large logarithms due to soft gluon emissions. We report a recent analytical calculation of the anomalous dimension matrix with both massless and massive partons at two-loop level, which describes the two-loop infrared singularities of any scattering amplitudes with an arbitrary number of massless and massive partons, and also enables soft gluon resummation at next-to-next-to-leading-logarithmic order. As an application, we calculate the infrared poles in the q qbar -> t tbar and gg -> t tbar scattering amplitudes at two-loop …

research product

Updated Predictions for Higgs Production at the Tevatron and the LHC

We present updated predictions for the total cross section for Higgs boson production through gluon fusion at hadron colliders. In addition to renormalization-group improvement at next-to-next-to-next-to-leading logarithmic accuracy, we incorporate the two-loop electroweak corrections, which leads to the most precise predictions at present. Numerical results are given for Higgs masses between 115 GeV and 200 GeV at the Tevatron with \sqrt{s}=1.96 TeV and the LHC with \sqrt{s}=7-14 TeV.

research product

Two-loop divergences of scattering amplitudes with massive partons

We complete the study of two-loop infrared singularities of scattering amplitudes with an arbitrary number of massive and massless partons in non-abelian gauge theories. To this end, we calculate the universal functions F_1 and f_2, which completely specify the structure of three-parton correlations in the soft anomalous-dimension matrix, at two-loop order in closed analytic form. Both functions are found to be suppressed like O(m^4/s^2) in the limit of small parton masses, in accordance with mass factorization theorems proposed in the literature. On the other hand, they are unsuppressed and diverge logarithmically near the threshold for pair production of two heavy particles. As an applica…

research product

Top quark pair production beyond the next-to-leading order

We report on recent calculations of the total cross section and differential distributions of top quark pair production at hardon colliders, including the invariant mass distribution, the transverse momentum and rapidity distributions, as well as the forward-backward asymmetry. The calculations are based on soft gluon resummation at the next-to-next-to-leading logarithmic accuracy.

research product

Soft-gluon resummation for boosted top-quark production at hadron colliders

We investigate the production of highly energetic top-quark pairs at hadron colliders, focusing on the case where the invariant mass of the pair is much larger than the mass of the top quark. In particular, we set up a factorization formalism appropriate for describing the differential partonic cross section in the double soft and small-mass limit, and explain how to resum simultaneously logarithmic corrections arising from soft gluon emission and from the ratio of the pair-invariant mass to that of the top quark to next-to-next-to-leading logarithmic accuracy. We explore the implications of our results on approximate next-to-next-to-leading order formulas for the differential cross section…

research product

Two-loop divergences of massive scattering amplitudes in non-abelian gauge theories

The infrared divergences of QCD scattering amplitudes can be derived from an anomalous dimension \Gamma, which is a matrix in color space and depends on the momenta and masses of the external partons. It has recently been shown that in cases where there are at least two massive partons involved in the scattering process, starting at two-loop order \Gamma receives contributions involving color and momentum correlations between three (and more) partons. The three-parton correlations can be described by two universal functions F_1 and f_2. In this paper these functions are calculated at two-loop order in closed analytic form and their properties are studied in detail. Both functions are found …

research product