0000000000172551
AUTHOR
F. Matthias Bickelhaupt
B-DNA Structure and Stability as Function of Nucleic Acid Composition. Dispersion-Corrected DFT Study of Dinucleoside-Monophosphate Single and Double Strands
actions of the sugar-phosphate skeleton with water; (6) hydrophobic interactions of the DNA cylindrical core, made up by the hydrogen-bonded and stacked nitrogen bases, with the water solvent. Recently, there has been increasing effort in developing and applying quantum chemical methods able to reproduce the structure of native B-DNA and to correctly describe the energy involved in the intrastrand and interstrand noncovalent interactions between the nucleotide monomers. This topic has been approached by both wave function methods and density functional theory. [2] Water solvent and sodium counterions also play an important role in the formation and relative stabilization of the double-helic…
Editorial for PCCP themed issue "Developments in Density Functional Theory''
This issue provides an overview of the state-of-the-art of DFT, ranging from mathematical and software developments, via topics in chemical bonding theory, to all kinds of molecular and material properties. Through this issue, we also celebrate the enormous contributions that Evert Jan Baerends has made to this field.
B‐DNA structure and stability: the role of nucleotide composition and order
Abstract We have quantum chemically analyzed the influence of nucleotide composition and sequence (that is, order) on the stability of double‐stranded B‐DNA triplets in aqueous solution. To this end, we have investigated the structure and bonding of all 32 possible DNA duplexes with Watson–Crick base pairing, using dispersion‐corrected DFT at the BLYP‐D3(BJ)/TZ2P level and COSMO for simulating aqueous solvation. We find enhanced stabilities for duplexes possessing a higher GC base pair content. Our activation strain analyses unexpectedly identify the loss of stacking interactions within individual strands as a destabilizing factor in the duplex formation, in addition to the better‐known eff…