0000000000172559
AUTHOR
I.h. Lazarus
The SAGE spectrometer: A tool for combined in-beam gamma-ray and conversion electron spectroscopy
International audience; The sage spectrometer allows simultaneous in-beam -ray and internal conversion electron measurements, by combining a germanium detector array with a highly segmented silicon detector and an electron transport system. sage is coupled with the ritu gas- lled recoil separator and the great focal-plane spectrometer for recoil-decay tagging studies. Digital electronics are used both for the ray and the electron parts of the spectrometer. sage was commissioned in the Accelerator Laboratory of the University of Jyvaskyla in the beginning of 2010.
Investigation of the Δn = 0 selection rule in Gamow-Teller transitions: The β-decay of 207Hg
5 pags., 3 figs., 1 tab. -- Open Access funded by Creative Commons Atribution Licence 4.0
Decay studies of the long-lived states in Tl-186
9 pags., 12 figs., 3 tabs.
Commissioning of the BRIKEN beta-delayed neutron detector for the study of exotic neutron-rich nuclei
Beta-delayed neutron emission (Beta-n) is a form of radioactive decay in which an electron, an anti-neutrino and one or more neutrons are emitted. This process arises if the energy window of the decay Q_Beta is greater than the neutron separation energy S n of the daughter. The probability in each decay of emitting neutrons is called the Pn value. This form of decay plays a key role in the synthesis of chemical elements in the Universe via the rapid neutron capture process, or r-process. The r-process proceeds far from the valley of nuclear stability, and leads to very neutron-rich nuclei that then decay to the line of stability. Most of these nuclei are ßn emitters. The initial abundance d…
Conceptual design of the AGATA 1$\pi$ array at GANIL
The Advanced GAmma Tracking Array (AGATA) has been installed at the GANIL facility, Caen-France. This setup exploits the stable and radioactive heavy-ions beams delivered by the cyclotron accelerator complex of GANIL. Additionally, it benefits from a large palette of ancillary detectors and spectrometers to address in-beam γ-ray spectroscopy of exotic nuclei. The set-up has been designed to couple AGATA with a magnetic spectrometer, charged-particle and neutron detectors, scintillators for the detection of high-energy γ rays and other devices such as a plunger to measure nuclear lifetimes. In this paper, the design and the mechanical characteristics of the set-up are described. Based on sim…
Compton imaging with AGATA and SmartPET for DESPEC
DESPEC (DEcay SPECtroscopy) is a spectrometer, currently under construction, which is to be used at the FAIR (Facility for Antiproton and Ion Research) facility at GSI Darmstadt, Germany, as part of the NuSTAR (Nuclear STructure, Astrophysics and Reactions) project. Its goal is to analyse the decay of exotic nuclei produced via the Super-FRS (SUPERconducting FRagment Separator). The optimal configuration of certain elements of the spectrometer, namely a HPGe (High Purity Germanium) tracking array, is still under consideration. Work currently being carried out at the University of Liverpool using a segmented, coaxial HPGe detector (AGATA B009) and a pixelated, planar HPGe detector (SmartPET …
The BRIKEN Project: Extensive Measurements of $\beta $-delayed Neutron Emitters for the Astrophysical r Process
An ambitious program to measure decay properties, primarily β-delayed neutron emission probabilities and half-lives, for a significant number of nuclei near or on the path of the rapid neutron capture process, has been launched at the RIKEN Nishina Center. We give here an overview of the status of the project.
β decay studies of n-rich Cs isotopes with the ISOLDE Decay Station
R. Lica et al. -- 14 pags., 7 figs., tab. -- Open Access funded by Creative Commons Atribution Licence 3.0
First Accurate Normalization of the β -delayed α Decay of N16 and Implications for the C12(α,γ)O16 Astrophysical Reaction Rate
The C-12(alpha,gamma)O-16 reaction plays a central role in astrophysics, but its cross section at energies relevant for astrophysical applications is only poorly constrained by laboratory data. The reduced a width, gamma(11), of the bound 1(-) level in O-16 is particularly important to determine the cross section. The magnitude of gamma(11) is determined via sub-Coulomb a-transfer reactions or the beta-delayed a decay of N-16, but the latter approach is presently hampered by the lack of sufficiently precise data on the beta-decay branching ratios. Here we report improved branching ratios for the bound 1(-) level [b(beta,11) = (5.02 +/- 0.10) x 10(-2)] and for beta-delayed alpha emission [b(…
Performance of the Advanced GAmma Tracking Array at GANIL
The performance of the Advanced GAmma Tracking Array (AGATA) at GANIL is discussed, on the basis of the analysis of source and in-beam data taken with up to 30 segmented crystals. Data processing is described in detail. The performance of individual detectors are shown. The efficiency of the individual detectors as well as the efficiency after $\gamma$-ray tracking are discussed. Recent developments of $\gamma$-ray tracking are also presented. The experimentally achieved peak-to-total is compared with simulations showing the impact of back-scattered $\gamma$ rays on the peak-to-total in a $\gamma$-ray tracking array. An estimate of the achieved position resolution using the Doppler broadeni…
Study of exotic decay of Cs isotope close to the proton drip line
6 pags., 6 figs. -- 27th International Nuclear Physics Conference (INPC2019) 29 July - 2 August 2019, Glasgow, UK
Competition between Allowed and First-Forbidden β Decay: The Case of Hg208→Tl208
The β decay of ^{208}Hg into the one-proton hole, one neutron-particle _{81}^{208}Tl_{127} nucleus was investigated at CERN-ISOLDE. Shell-model calculations describe well the level scheme deduced, validating the proton-neutron interactions used, with implications for the whole of the N>126, Z<82 quadrant of neutron-rich nuclei. While both negative and positive parity states with spin 0 and 1 are expected within the Q_{β} window, only three negative parity states are populated directly in the β decay. The data provide a unique test of the competition between allowed Gamow-Teller and Fermi, and first-forbidden β decays, essential for the understanding of the nucleosynthesis of heavy nuclei in…
β-delayed neutron emission of r-process nuclei at the N = 82 shell closure
This experiment was performed at RI Beam Factory operated by RIKEN Nishina Center and CNS, University of Tokyo. O.H, T.D, P.J.W, C.G.B, C.J.G and D.K would like to thank STFC, UK for support. This research was sponsored in part by the Office of Nuclear Physics, U.S. Department of Energy under Award No. DE-FG02-96ER40983 (UTK) and DEAC05-00OR22725 (ORNL), and by the National Nuclear Security Administration under the Stewardship Science Academic Alliances program through DOE Award No. DENA0002132. This work was supported by National Science Foundation under Grants No. PHY-1430152 (JINA Center for the Evolution of the Elements), No. PHY-1565546 (NSCL), and No. PHY-1714153 (Central Michigan Uni…
β decay of In133 : γ emission from neutron-unbound states in Sn133
Excited states in Sn-133 were investigated through the beta decay of In-133 at the ISOLDE facility. The ISOLDE Resonance Ionization Laser Ion Source (RILIS) provided isomer-selective ionization for In-133, allowing us to study separately, and in detail, the beta-decay branch of In-133 J(pi)= (9/2(+)) ground state and its J(pi) = (1/2(-)) isomer.Thanks to the large spin difference of the two beta-decaying states of In-133, it is possible to investigate separately the lower and higher spin states in the daughter, Sn-133, and thus to probe independently different single-particle and single-hole levels. We report here new gamma transitions observed in the decay of In-133, including those assign…
First Exploration of Neutron Shell Structure below Lead and beyond N=126
The nuclei below lead but with more than 126 neutrons are crucial to an understanding of the astrophysical r process in producing nuclei heavier than A∼190. Despite their importance, the structure and properties of these nuclei remain experimentally untested as they are difficult to produce in nuclear reactions with stable beams. In a first exploration of the shell structure of this region, neutron excitations in ^{207}Hg have been probed using the neutron-adding (d,p) reaction in inverse kinematics. The radioactive beam of ^{206}Hg was delivered to the new ISOLDE Solenoidal Spectrometer at an energy above the Coulomb barrier. The spectroscopy of ^{207}Hg marks a first step in improving our…
Transmission Efficiency of the SAGE Spectrometer Using GEANT4
The new SAGE spectrometer allows simultaneous electron and γ-ray in-beam studies of heavy nuclei. A comprehensive GEANT4 simulation suite has been created for the SAGE spectrometer. This includes both the silicon detectors for electron detection and the germanium detectors for γ-ray detection. The simulation can be used for a wide variety of tests with the aim of better understanding the behaviour of SAGE. A number of aspects of electron transmission are presented here.
AGATA-Advanced GAmma Tracking Array
WOS: 000300864200005