0000000000172643
AUTHOR
Mahmud Tareq Hassan Khan
TOMOCOMD-CARDD descriptors-based virtual screening of tyrosinase inhibitors: evaluation of different classification model combinations using bond-based linear indices.
Abstract A new set of bond-level molecular descriptors (bond-based linear indices) are used here in QSAR (quantitative structure–activity relationship) studies of tyrosinase inhibitors, for finding functions that discriminate between the tyrosinase inhibitor compounds and inactive ones. A database of 246 compounds was collected for this study; all organic chemicals were reported as tyrosinase inhibitors; they had great structural diversity. This dataset can be considered as a helpful tool, not only for theoretical chemists but also for other researchers in this area. The set used as inactive has 412 drugs with other clinical uses. Twelve LDA-based QSAR models were obtained, the first six us…
Atom- and Bond-Based 2D TOMOCOMD-CARDD Approach and Ligand-Based Virtual Screening for the Drug Discovery of New Tyrosinase Inhibitors
Two-dimensional atom- and bond-based TOMOCOMD-CARDD descriptors and linear discriminant analysis (LDA) are used in this report to perform a quantitative structure-activity relationship (QSAR) study of tyrosinase-inhibitory activity. A database of inhibitors of the enzyme is collected for this study, within 246 highly dissimilar molecules presenting antityrosinase activity. In total, 7 discriminant functions are obtained by using the whole set of atom- and bond-based 2D indices. All the LDA-based QSAR models show accuracies above 90% in the training set and values of the Matthews correlation coefficient (C) varying from 0.85 to 0.90. The external validation set shows globally good classifica…
Tyrosinase Enzyme: 1. An Overview on a Pharmacological Target
The tyrosinase enzyme (EC 1.14.18.1) is an oxidoreductase inside the general enzyme classification and is involved in the oxidation and reduction process in the epidermis. These chemical reactions that the enzyme catalyzes are of principal importance in the melanogenesis process. This process of melanogenesis is related to the melanin formation, a heteropolymer of indolic nature that provides the different tonalities in the skin and helps to the protection from the ultraviolet radiation. However, a pigment overproduction, come up by the action of the tyrosinase, can cause different disorders in the skin related to the hyperpigmentation. Several studies mainly focused on the characteristics …
Retrained Classification of Tyrosinase Inhibitors and “In Silico” Potency Estimation by Using Atom-Type Linear Indices
In this paper, the authors present an effort to increase the applicability domain (AD) by means of retraining models using a database of 701 great dissimilar molecules presenting anti-tyrosinase activity and 728 drugs with other uses. Atom-based linear indices and best subset linear discriminant analysis (LDA) were used to develop individual classification models. Eighteen individual classification-based QSAR models for the tyrosinase inhibitory activity were obtained with global accuracy varying from 88.15-91.60% in the training set and values of Matthews correlation coefficients (C) varying from 0.76-0.82. The external validation set shows globally classifications above 85.99% and 0.72 fo…
Prediction of tyrosinase inhibition activity using atom-based bilinear indices.
A set of novel atom-based molecular fingerprints is proposed based on a bilinear map similar to that defined in linear algebra. These molecular descriptors (MDs) are proposed as a new means of molecular parametrization easily calculated from 2D molecular information. The nonstochastic and stochastic molecular indices match molecular structure provided by molecular topology by using the kth nonstochastic and stochastic graph-theoretical electronic-density matrices, M(k) and S(k), respectively. Thus, the kth nonstochastic and stochastic bilinear indices are calculated using M(k) and S(k) as matrix operators of bilinear transformations. Chemical information is coded by using different pair com…
New tyrosinase inhibitors selected by atomic linear indices-based classification models.
In the present report, the use of the atom-based linear indices for finding functions that discriminate between the tyrosinase inhibitor compounds and inactive ones is presented. In this sense, discriminant models were applied and globally good classifications of 93.51% and 92.46% were observed for non-stochastic and stochastic linear indices best models, respectively, in the training set. The external prediction sets had accuracies of 91.67% and 89.44%. In addition, these fitted models were used in the screening of new cycloartane compounds isolated from herbal plants. A good behavior is shown between the theoretical and experimental results. These results provide a tool that can be used i…
Atom-Based 2D Quadratic Indices in Drug Discovery of Novel Tyrosinase Inhibitors: Results ofIn Silico Studies Supported by Experimental Results
Herein we present results of QSAR studies of tyrosinase inhibitors employing one of the atom-based TOMOCOMD-CARDD (acronym of TOpological MOlecular COMputer Design-Computer Aided “Rational” Drug Design) descriptors, molecular quadratic indices, and Linear Discriminant Analysis (LDA) as pattern recognition method. In this way, a database of 246 organic chemicals, reported as tyrosinase inhibitors having great structural variability, was analyzed and presented as a helpful tool, not only for theoretical chemists but also for other researchers in this area. In total, 12 LDA-based QSAR models were obtained, the first six with the non-stochastic total and local quadratic indices and the six rema…
Dragon method for finding novel tyrosinase inhibitors: Biosilico identification and experimental in vitro assays
QSAR (quantitative structure-activity relationship) studies of tyrosinase inhibitors employing Dragon descriptors and linear discriminant analysis (LDA) are presented here. A data set of 653 compounds, 245 with tyrosinase inhibitory activity and 408 having other clinical uses were used. The active data set was processed by k-means cluster analysis in order to design training and prediction series. Seven LDA-based QSAR models were obtained. The discriminant functions applied showed a globally good classification of 99.79% for the best model Class=-96.067+1.988 x 10(2)X0Av +9 1.907 BIC3 + 6.853 CIC1 in the training set. External validation processes to assess the robustness and predictive pow…
Bond-Based 2D Quadratic Fingerprints in QSAR Studies: Virtual and In vitro Tyrosinase Inhibitory Activity Elucidation
In this report, we show the results of quantitative structure–activity relationship (QSAR) studies of tyrosinase inhibitory activity, by using the bond-based quadratic indices as molecular descriptors (MDs) and linear discriminant analysis (LDA), to generate discriminant functions to predict the anti-tyrosinase activity. The best two models [Eqs (6) and (12)] out of the total 12 QSAR models developed here show accuracies of 93.51% and 91.21%, as well as high Matthews correlation coefficients (C) of 0.86 and 0.82, respectively, in the training set. The validation external series depicts values of 90.00% and 89.44% for these best two equations (6) and (12), respectively. Afterwards, a second …