0000000000172684

AUTHOR

Clara Chiappara

Improved Photocatalytic Activity of Polysiloxane TiO2 Composites by Thermally Induced Nanoparticle Bulk Clustering and Dye Adsorption

Fine control of nanoparticle clustering within polymeric matrices can be tuned to enhance the physicochemical properties of the resulting composites, which are governed by the interplay of nanoparticle surface segregation and bulk clustering. To this aim, out-of-equilibrium strategies can be leveraged to program the multiscale organization of such systems. Here, we present experimental results indicating that bulk assembly of highly photoactive clusters of titanium dioxide nanoparticles within an in situ synthesized polysiloxane matrix can be thermally tuned. Remarkably, the controlled nanoparticle clustering results in improved degradation photocatalytic performances of the material under …

research product

On the Interaction between 1D Materials and Living Cells

One-dimensional (1D) materials allow for cutting-edge applications in biology, such as single-cell bioelectronics investigations, stimulation of the cellular membrane or the cytosol, cellular capture, tissue regeneration, antibacterial action, traction force investigation, and cellular lysis among others. The extraordinary development of this research field in the last ten years has been promoted by the possibility to engineer new classes of biointerfaces that integrate 1D materials as tools to trigger reconfigurable stimuli/probes at the sub-cellular resolution, mimicking the in vivo protein fibres organization of the extracellular matrix. After a brief overview of the theoretical models r…

research product

ELECTRODEPOSITION OF NOVEL POLY(NAPHTHALENEDIIMIDE-QUATERTHIOPHENE) THIN FILMS AND APPLICATIONS IN PLASTIC OPTOELECTRONICS DEVICES

A novel symmetric naphthalenediimide-quaterthiophene derivative (NDIT4d) has been polymerized on different substrates including glassy carbon and ITO/PET electrodes by means of electrochemical methods. XPS and UV-VIS spectroscopy as well as cyclic voltammetry have been employed for characterizing the thin film chemical features, the band gap and the HOMO and LUMO levels. DFT computational studies were in close agreement with the experimental observables also showing intriguing geometrical effects on the band gap energy values. The comparison of the energy levels locations of the electrodeposited poly(naphthalenediimide-quaterthiophene) derivative (e-PNDIT4) and P3HT thin films transferred b…

research product

Symmetric Naphthalenediimidethiophene Systems for Electrochromic Devices

research product

Improved performance in flexible organic solar cells by using copolymeric phase-separation modulators

One of the main problems related to the low performance of the organic solar cells (OSCs), concerns the low mobility of the materials constituting the heterojunction. Indeed, the poor charge transport in the active layer is the principal cause of a competition between separation and recombination of the photogenerated carriers. In this regard, a major obstacle to enhance OSCs efficiency is developing strategies to optimize the exciton dissociation and, consequently, the charge collection at the electrodes. Donor and acceptor systems must be well mixed on the length scale of 5 – 20 nm (exciton diffusion length) to meet the criteria for efficient exciton dissociation. In addition, the network…

research product

Investigation of recovery mechanisms in dye sensitized solar cells

Abstract We study the spontaneous recovery phenomenon displayed by solar cells sensitized with a ruthenium complex-based dye N719, which manifests with the increase over the time (from several minutes up to some days) of the short circuit current density J sc and the open circuit voltage V oc , during cell illumination. Under dark conditions the current decreases over time after the application of forward bias voltages. We investigate the effects of temperature and electrolyte composition by means of current–voltage measurements and electrochemical impedance spectroscopy, both under dark and illumination conditions. The main result is that the recovery of the performances depends on the cha…

research product

ELECTROPOLYMERIZATION OF NOVEL BENZOFULVENES FOR FLEXIBLE ELECTROCHROMIC DEVICES

research product

Piezoresistive Sensors from Bithiophene-fulleropyrrolidine Bisadducts Thin-Films

The phenomenon of piezoresistivity in materials is based on the separation of conductive domains triggered by mechanical strains, resulting in a variation of the electrical resistance.1 This property is at the core of sensors for wearable electronics, e-skins, human motion detectors and machine learning devices.2 Fundamental requirements include lightness, good transparency, high flexibility and sensitivity to tiny deformations. However, the fabrication of a system integrating all these features is challenging. Herein, we show a semitransparent piezoresistive sensor realized by an electropolymerized bithiophene‐fulleropyrrolidine bisadduct onto ITO/PET3 (see Figure 1a). The good outcome of …

research product

Symmetric naphthalenediimidequaterthiophenes for electropolymerized electrochromic thin films

A new symmetric naphthalenediimidequaterthiophene (s-NDI2ODT4) was synthesized and exhibited the capability to electropolymerize alone or with EDOT affording polymers with controlled donor/acceptor monomer ratios. s-NDI2ODT4-EDOT-based copolymers showed low band gaps, wide optical absorption ranges extending to the near IR region, tuned electrical properties, thin-film surface morphology and hydrophilicity as well as high coloration efficiency in electrochromic devices.

research product

Bending Sensors Based on Thin Films of Semitransparent Bithiophene-Fulleropyrrolidine Bisadducts

In this study, a novel bithiophene‐fulleropyrrolidine bisadducts system (bis‐Th2PC 60 ) was synthesized and electropolymerized by chronoamperometry onto flexible ITO/PET substrates. The resulting semitransparent thin film was characterized by XPS, FT‐IR, cyclic voltammetry and optical techniques, confirming the good outcome of the electropolymerization process. AFM investigations permitted to highlight an inherent disordered granular morphology, in which the grain‐to‐grain separation depends upon the application of bending. The electrical resistance of the thin film was characterized as function of bending (in the range 0°‐90°), showing promising responsivity to low bending angles (10°‐30°)…

research product

Enhanced power-conversion efficiency in organic solar cells incorporating copolymeric phase-separation modulators

A new class of copolymers containing oligothiophene moieties with different lengths and fullerene units have been designed and prepared by an easy and inexpensive one-step synthetic approach. The incorporation of small quantities of these copolymers into bulk heterojunction (BHJ) solar cells with donor regioregular polythiophene (P3HT) and an acceptor fullerene derivate (PCBM) results in good control of the phase separation process without further affecting the BHJ optoelectronic properties. Indeed, under thermal annealing these copolymers allow the modulation of the growth of domains whose size depends on the length of the copolymer repetitive units. Domain size on the same length scale as…

research product

SUPERHYDROPHOBIC TIO2-FLUORINATED POLYSILOXANE NANOCOMPOSITES WITH PHOTOCATALYTIC CLEANING ACTIVITY FOR CULTURAL HERITAGE APPLICATIONS

research product

Improvement of DSSC performance by voltage stress application

Dye-sensitized solar cells (DSSCs) are promising third generation photovoltaic devices given their potential low cost and high efficiency. Some factors still affect DSSCs performance, such structure of electrodes, electrolyte compositions, nature of the sensitizers, power conversion efficiency, long-term stability, etc. In this work we discuss the effect of electrical stresses, which allow to improve DSSC performance. We have investigated the outcomes of forward and reverse DC bias stress as a function of time, voltage, and illumination level in the DSSCs sensitized with the N719, Ruthenium complex based dye. We demonstrate that all the major solar cell parameters, i.e., open circuit voltag…

research product

Low angle bending detection semi-transparent piezoresistive sensor

We designed, fabricated, and validated a piezoresistive bending sensor, a fundamental component of wearable electronic devices for monitoring human motion. The most diffused opaque carbon-based resistance flex sensors suffer from low detection for small bending angles. The sensor we here present is based on a semi-transparent active material (fulleropyrrolidine bisadducts polymer) and has the remarkable advantage of good electrical properties for low bending angles. The fabrication steps are effective since a pre-patterned ITO/PET surface is functionalized by chronoamperometric deposition, and the silver electrical contacts are inkjet printed. We propose a fitting function of the measured t…

research product