0000000000172717
AUTHOR
Dietmar Utesch
Toxicological implications of enzymatic control of reactive metabolites.
Many foreign compounds are transformed into reactive metabolites, which may produce genotoxic effects by chemically altering critical biomolecules. Reactive metabolites are under the control of activating, inactivating and precursor sequestering enzymes. Such enzymes are under the long-term control of induction and repression, as well as the short-term control of post-translational modification and low molecular weight activators or inhibitors. In addition, the efficiency of these enzyme systems in preventing reactive metabolite-mediated toxicity is directed by their subcellular compartmentalization and isoenzymic multiplicity. Extrapolation from toxicological test systems to the human req…
Dependency of the in vitro stabilization of differentiated functions in liver parenchymal cells on the type of cell line used for co-culture.
The differentiation status in cultures of primary rat liver parenchymal cells was determined by measuring the activities of various xenobiotic metabolizing enzymes. Most enzyme activities dropped rather rapidly in monocultures of parenchymal cells. The protein content and the activities of cytosolic epoxide hydrolase, glutathione S-transferase, and alpha-naphthol UDP-glucuronosyl transferase were, however, well stabilized in 7-day-old co-cultures of parenchymal cells with two different lines of rat liver nonparenchymal epithelial cells (NEC1 and NEC2). Phenol sulfotransferase and microsomal epoxide hydrolase activity were reduced in this coculture system after 7 days to about 30 and 20% of …
Metabolism of propafenone and verapamil by cryopreserved human, rat, mouse and dog hepatocytes: comparison with metabolism in vivo
In the present study we examined the metabolism of [(14)C]propafenone (P) and [(14)C]verapamil (V) using cryopreserved human, dog (Beagle), rat (Sprague-Dawley) and mouse (NMRI) hepatocytes. The percentage ratios of the metabolites were identified after extraction by HPLC with UV and radioactivity detection. Phase-II metabolites were cleaved using beta-glucuronidase. Metabolism of the drugs by cryopreserved hepatocytes was compared with that in the respective species in vivo. All phase-I and -II metabolites known from in vivo experiments: 5-hydroxy-P (5-OH-P); 4'-hydroxy-P (4'-OH-P); N-despropyl-P (NdesP) and the respective glucuronides, were identified after incubation with cryopreserved h…
Cryopreserved primary hepatocytes as a constantly available in vitro model for the evaluation of human and animal drug metabolism and enzyme induction.
The use of primary hepatocytes is now well established for both studies of drug metabolism and enzyme induction. Cryopreservation of primary hepatocytes decreases the need for fresh liver tissue. This is especially important for research with human hepatocytes because availability of human liver tissue is limited. In this review, we summarize our research on optimization and validation of cryopreservation techniques. The critical elements for successful cryopreservation of hepatocytes are (1) the freezing protocol, (2) the concentration of the cryoprotectant [10% dimethyl-sulfoxide (DMSO)], (3) slow addition and removal of DMSO, (4) carbogen equilibration during isolation of hepatocytes and…
The gap junctional intercellular communication is no prerequisite for the stabilization of xenobiotic metabolizing enzyme activities in primary rat liver parenchymal cells in vitro.
In primary monocultures of adult rat liver parenchymal cells (PC), the activities of the xenobiotic metabolizing enzymes microsomal epoxide hydrolase (mEHb), soluble epoxide hydrolase (sEH), glutathione S-transferases (GST), and phenolsulfotransferase (ST) were reduced after 7 d to values below 33% of the initial activities. Furthermore, the gap junctional intercellular communication (GJIC), measured after microinjection by dye transfer, decreased from 90% on Day 1 to undetectable values after 5 d in monoculture. Co-culture of PC with nonparenchymal rat liver epithelial cells (NEC) increased (98% on Day 1) and stabilized (82% on Day 7) the homotypic GJIC of PC. Additionally, most of the mea…
Phosphorylation of carcinogen metabolizing enzymes: regulation of the phosphorylation status of the major phenobarbital inducible cytochromes P-450 in hepatocytes
We present data showing that the major phenobarbital inducible cytochromes P-450 (cytochrome P-450IIB1 and cytochrome P-450IIB2) were phosphorylated in intact hepatocytes. This phosphorylation was greatly increased by the cAMP derivatives N6-dibutyryl-cAMP and 8-thiomethyl-cAMP mediated by a cAMP-dependent protein kinase. Most importantly the phosphorylation status of cytochromes P-450 was shown to change in the hepatocytes after treatment with glucagon, which is known to increase the level of cAMP in hepatocytes. The observed impact of the hormone glucagon on the phosphorylation of distinct cytochrome P-450 forms in intact hepatocytes reveals the possibility that the enzyme activity of cyt…
Regio- and stereoselective regulation of monooxygenase activities by isoenzyme-selective phosphorylation of cytochrome P450.
The phosphorylation of the two major phenobarbital-inducible cytochrome P450 isoenzymes IIB1 and IIB2 was increased in hepatocytes by the action of the membrane permeating cAMP derivatives N6-dibutyryl-cAMP and 8-thiomethyl-cAMP. Under these conditions the dealkylation of 7-pentoxyresorufin, a selective substrate of cytochrome P450IIB1 and P450IIB2 was markedly reduced. 16 beta-Hydroxylation of testosterone which is catalyzed specifically only by cytochrome P450IIB1 and IIB2 was strongly reduced; for 16 alpha-hydroxylation which is also catalyzed by cytochrome P450IIB1 and IIB2 but additionally by 3 further cytochrome P450 isoenzymes, this reduction was less pronounced; for the oxidation of…
Effects of sodium butyrate on DNA content, glutathione S-transferase activities, cell morphology and growth characteristics of rat liver nonparenchymal epithelial cells in vitro
The effects of sodium butyrate, which has been shown to act as a differentiation promoting agent in several different tumor cell lines, were studied in a rat liver nonparenchymal epithelial cell line. Exposure of these cells to 3.75 mM butyrate resulted in an inhibition of cell proliferation and, at the same time, an increase in cell diameter (2- to 6-fold) and size of the nuclei (approximately 2-fold) after 3 days in culture. Binucleated cells arose, comprising approximately 12% of the cells investigated, and the number of cells with an abnormal set of chromosomes was increased. Intercellular communication, measured by dye transfer of Lucifer Yellow, was unchanged. From the various xenobio…
New Hepatocyte In Vitro Systems for Drug Metabolism: Metabolic Capacity and Recommendations for Application in Basic Research and Drug Development, Standard Operation Procedures
Primary hepatocytes represent a well-accepted in vitro cell culture system for studies of drug metabolism, enzyme induction, transplantation, viral hepatitis, and hepatocyte regeneration. Recently, a multicentric research program has been initiated to optimize and standardize new in vitro systems with hepatocytes. In this article, we discuss five of these in vitro systems: hepatocytes in suspension, perifusion culture systems, liver slices, co-culture systems of hepatocytes with intestinal bacteria, and 96-well plate bioreactors. From a technical point of view, freshly isolated or cryopreserved hepatocytes in suspension represent a readily available and easy-to-handle in vitro system that c…
Photochemical genotoxicity: principles and test methods
In recent years, assessing the photogenotoxic potential of a compound became an issue for certain drugs and cosmetical products. Therefore, existing methods performed according to international guidelines (e.g. OECD guidelines) were adapted to the use of concurrent UV-visible (UV-Vis) light irradiation for the assessment of photomutagenicity/photogenotoxicity. In this review, photobiological bases of the processes occurring in the cell after irradiation with UV- and/or visible (vis)-light as well as a compilation of testing methods is presented. Methods comprise cell free investigations on naked DNA and in vitro methods, such as the photo-Ames test, the photo-HPRT/photo-mouse lymphoma assay…
Differential stabilization of cytochrome P-450 isoenzymes in primary cultures of adult rat liver parenchymal cells.
Cytochrome P-450 dependent hydroxylation of testosterone was measured in 7-day-old cultures of primary rat liver parenchymal cells. Determinations were carried out in monocultures of parenchymal cells and co-cultures of parenchymal cells with rat liver nonparenchymal epithelial cells, or mouse embryo fibroblasts. In the monoculture system, testosterone metabolism was drastically reduced and hardly measurable after 7 days in culture. In the co-culture systems, individual P-450 isoenzymes were stabilized on different levels. P-450s p and presumably c were well preserved, P-450 a was reduced but clearly measurable, P-450 h was totally lost whereas P-450s b and e were not measurable after 7 day…
Gap junctional intercellular communication of cultured rat liver parenchymal cells is stabilized by epithelial cells and their isolated plasma membranes
The gap junctional intercellular communication (GJIC) determined by measuring dye coupling with Lucifer yellow, decreased within 3 d from 66% to 28% in monocultures of rat liver parenchymal cells. Coculturing of the parenchymal cells with a nonparenchymal epithelial cell line from rat liver resulted in increased and stabilized intercellular communication (83% after 3 d). The presence of isolated plasma membrane vesicles of the nonparenchymal epithelial cells also stabilized the intercellular communication between the liver parenchymal cells (70% after 3 d). When liver parenchymal cells were cocultured with a rat liver fibroblast cell line the gap junctional communication between the parench…
A Method for the Cryopreservation of Liver Parenchymal Cells for Studies of Xenobiotics
Abstract An optimized computer-controlled freezing protocol for the cryopreservation of rat liver parenchymal cells was developed. The best survival rates were obtained when a slow cooling rate was used and when the supercooling was interrupted with a shock cooling to initiate ice nucleation. Ten percent dimethyl sulfoxide was added and removed gradually for best results. Thawed rat liver parenchymal cells had a viability, as judged by trypan blue exclusion, of 69% (SD = 6) versus 82% (SD = 7) for freshly isolated cells. The content and activities of the xenobiotic metabolizing enzymes, cytochrome P450. UDP-glucuronosyl transferase, and microsomal and cytosolic epoxide hydrolase, were not a…
Use of Mechanistic Information for Adequate Metabolic Design of Genotoxicity Studies and Toxicological Interactions of Drugs and Environmental Chemicals
Microorganisms as well as mammalian cells used for mutagenicity investigations have little or no activities for metabolism of premutagens and precarcinogens, i.e. of compounds ultimately leading to mutations and cancer but first requiring metabolic activation. Therefore, to such cells an exogenous activating system is added, generally the postmitochondrial supernatant fraction of the liver homogenate and a NADPH-generating system (Ames et al. 1976). In this situation enzymes requiring cofactors other than NADP(H) are unlikely to be active. Thus, this metabolic system is rather artificial. Monooxygenases are active in this system. They, for example, convert polycyclic aromatic hydrocarbons t…
Characterization of cryopreserved rat liver parenchymal cells by metabolism of diagnostic substrates and activities of related enzymes
The metabolism of testosterone and benzo(a)pyrene (BaP) which is mediated by diverse enzymes was determined in cryopreserved rat liver parenchymal cells and compared with that found in freshly isolated cells. In addition, the activities of single xenobiotic-metabolizing enzymes were measured by using specific substrates. The cytochrome P450 (P450)-mediated total metabolic conversion of testosterone was reduced to 55% in cryopreserved cells. The metabolite profile, i.e. the formation of single metabolites compared with total metabolic conversion, was however unchanged when compared with freshly isolated cells. A concomitant reduction in the activities of the involved P450 isoenzymes can ther…