0000000000172723

AUTHOR

Benjamin Dose

Unexpected Bacterial Origin of the Antibiotic Icosalide: Two-Tailed Depsipeptide Assembly in Multifarious Burkholderia Symbionts.

Icosalide is an unusual two-tailed lipocyclopeptide antibiotic that was originally isolated from a fungal culture. Yet, its biosynthesis and ecological function have remained enigmatic. By genome mining and metabolic profiling of a bacterial endosymbiont ( Burkholderia gladioli) of the pest beetle Lagria villosa, we unveiled a bacterial origin of icosalide. Functional analysis of the biosynthetic gene locus revealed an unprecedented nonribosomal peptide synthetase (NRPS) that incorporates two β-hydroxy acids by means of two starter condensation domains in different modules. This unusual assembly line, which may inspire new synthetic biology approaches, is widespread among many symbiotic Bur…

research product

Insect-associated bacteria assemble the antifungal butenolide gladiofungin by non-canonical polyketide chain termination

Abstract Genome mining of one of the protective symbionts (Burkholderia gladioli) of the invasive beetle Lagria villosa revealed a cryptic gene cluster that codes for the biosynthesis of a novel antifungal polyketide with a glutarimide pharmacophore. Targeted gene inactivation, metabolic profiling, and bioassays led to the discovery of the gladiofungins as previously‐overlooked components of the antimicrobial armory of the beetle symbiont, which are highly active against the entomopathogenic fungus Purpureocillium lilacinum. By mutational analyses, isotope labeling, and computational analyses of the modular polyketide synthase, we found that the rare butenolide moiety of gladiofungins deriv…

research product

Biosynthesis of Sinapigladioside, an Antifungal Isothiocyanate from Burkholderia Symbionts

Abstract Sinapigladioside is a rare isothiocyanate‐bearing natural product from beetle‐associated bacteria (Burkholderia gladioli) that might protect beetle offspring against entomopathogenic fungi. The biosynthetic origin of sinapigladioside has been elusive, and little is known about bacterial isothiocyanate biosynthesis in general. On the basis of stable‐isotope labeling, bioinformatics, and mutagenesis, we identified the sinapigladioside biosynthesis gene cluster in the symbiont and found that an isonitrile synthase plays a key role in the biosynthetic pathway. Genome mining and network analyses indicate that related gene clusters are distributed across various bacterial phyla including…

research product