0000000000172725

AUTHOR

Kirstin Scherlach

showing 3 related works from this author

Unexpected Bacterial Origin of the Antibiotic Icosalide: Two-Tailed Depsipeptide Assembly in Multifarious Burkholderia Symbionts.

2018

Icosalide is an unusual two-tailed lipocyclopeptide antibiotic that was originally isolated from a fungal culture. Yet, its biosynthesis and ecological function have remained enigmatic. By genome mining and metabolic profiling of a bacterial endosymbiont ( Burkholderia gladioli) of the pest beetle Lagria villosa, we unveiled a bacterial origin of icosalide. Functional analysis of the biosynthetic gene locus revealed an unprecedented nonribosomal peptide synthetase (NRPS) that incorporates two β-hydroxy acids by means of two starter condensation domains in different modules. This unusual assembly line, which may inspire new synthetic biology approaches, is widespread among many symbiotic Bur…

0301 basic medicinemedicine.drug_classBurkholderia030106 microbiologyAntibioticsBiochemistryGenomePeptides Cyclic03 medical and health sciencesGene clustermedicineAnimalsPeptide SynthasesSymbiosisGeneticsDepsipeptidebiologyPseudomonasGeneral Medicinebiology.organism_classificationAnti-Bacterial AgentsColeoptera030104 developmental biologyBurkholderiaGenes BacterialMolecular MedicineIdentification (biology)ACS chemical biology
researchProduct

Biosynthesis of Sinapigladioside, an Antifungal Isothiocyanate from Burkholderia Symbionts

2021

Abstract Sinapigladioside is a rare isothiocyanate‐bearing natural product from beetle‐associated bacteria (Burkholderia gladioli) that might protect beetle offspring against entomopathogenic fungi. The biosynthetic origin of sinapigladioside has been elusive, and little is known about bacterial isothiocyanate biosynthesis in general. On the basis of stable‐isotope labeling, bioinformatics, and mutagenesis, we identified the sinapigladioside biosynthesis gene cluster in the symbiont and found that an isonitrile synthase plays a key role in the biosynthetic pathway. Genome mining and network analyses indicate that related gene clusters are distributed across various bacterial phyla including…

Burkholderia gladioliAntifungal AgentsBurkholderianatural productsMolecular ConformationMutagenesis (molecular biology technique)Microbial Sensitivity Tests010402 general chemistry01 natural sciencesBiochemistrychemistry.chemical_compoundBiosynthesisVery Important PaperIsothiocyanatesGene clustergenome miningBacterial phylaMolecular Biologybiology010405 organic chemistryCommunicationOrganic Chemistrybiology.organism_classificationCommunications0104 chemical sciencesBiosynthetic PathwaysBurkholderiaBiochemistrychemistryIsothiocyanateHypocrealesMolecular MedicinebiosynthesisisothiocyanateBacteriaChembiochem
researchProduct

Discovery of an Extended Austinoid Biosynthetic Pathway in Aspergillus calidoustus

2017

Filamentous fungi produce a wide range of natural products that are commonly used in various industrial contexts (e.g., pharmaceuticals and insecticides). Meroterpenoids are natural products of interest because of their various biological activities. Among the meroterpenoids, there is a group of insecticidal compounds known as the austinoids. These compounds have also been studied because of their intriguing spiro-lactone ring formation along with various modifications. Here, we present an extension of the original austinol/dehydroaustinol biosynthesis pathway from Aspergillus nidulans in the recently identified filamentous fungus Aspergillus calidoustus. Besides the discovery and elucidati…

InsecticidesGenes Fungal010402 general chemistry01 natural sciencesBiochemistryAspergillus nidulansMicrobiologyTerpenechemistry.chemical_compoundBiosynthesisAspergillus nidulansPolyketide synthaseGeneAspergillusAspergillus calidoustusbiologyTerpenes010405 organic chemistryGeneral Medicinebiology.organism_classificationBiosynthetic Pathways0104 chemical sciencesAspergilluschemistryBiochemistryPolyketidesbiology.proteinMolecular MedicineDimerizationPolyketide SynthasesMetabolic Networks and PathwaysBiosynthetic genesACS Chemical Biology
researchProduct