0000000000172829
AUTHOR
Kenzo Makino
Heralded creation of photonic qudits from parametric down conversion using linear optics
We propose an experimental scheme to generate, in a heralded fashion, arbitrary quantum superpositions of two-mode optical states with a fixed total photon number $n$ based on weakly squeezed two-mode squeezed state resources (obtained via weak parametric down conversion), linear optics, and photon detection. Arbitrary $d$-level (qudit) states can be created this way where $d=n+1$. Furthermore, we experimentally demonstrate our scheme for $n=2$. The resulting qutrit states are characterized via optical homodyne tomography. We also discuss possible extensions to more than two modes concluding that, in general, our approach ceases to work in this case. For illustration and with regards to pos…
Timing Control of a Heralded Single Photon Emission
We experimentally demonstrate controlling the emission timing of a heralded single photon from a non-degenerate optical parametric oscillator, by placing another quickly tunable cavity at the exit as a shutter.
All-Optical Storage of Phase-Sensitive Quantum States of Light.
We experimentally demonstrate storage and on-demand release of phase-sensitive, photon-number superposition states of the form $\alpha |0\rangle + \beta e^{i\theta} |1\rangle$ for an optical quantized oscillator mode. For this purpose, we introduce a phase-probing mechanism to a storage system composed of two concatenated optical cavities, which was previously employed for storage of phase-insensitive single-photon states [Phys. Rev. X 3, 041028 (2013)]. This is the first demonstration of all-optically storing highly nonclassical and phase-sensitive quantum states of light. The strong nonclassicality of the states after storage becomes manifest as a negative region in the corresponding Wign…
Synchronization of optical photons for quantum information processing
We observe the Hong-Ou-Mandel interference via homodyne tomography on two photons extracted from two quantum memories.
Observation of high-purity single photons hopping between optical cavities
We experimentally demonstrate high-purity single photons hopping coherently between coupled optical cavities. The system shows high performance also as a controllable single-photon source, which emits single photons with a negative Wigner function.
All-optical storage of a qubit encoded in an oscillator
The efficient and reliable storage of quantum states plays a crucial role for the realization of quantum computation and communication. For example, in linear optics quantum computation as represented by the KLM scheme [1], quantum storage enables one to store intermediate “results” or to boost scalability and reliability of the computation. To employ quantum storage for quantum computation, the storage should be applicable to superposition states, including phase information of the superposition as well as the amplitude information of the state's coefficients. Some schemes exist for such storage using electron or nuclear spins [2]. However, an all-optical storage without the use of atoms o…
Creation, storage, and on-demand release of optical quantum states with a negative Wigner function
Highly nonclassical quantum states of light, characterized by Wigner functions with negative values, have been created so far only in a heralded fashion. In this case, the desired output emerges rarely and randomly from a quantum-state generator. An important example is the heralded production of high-purity single-photon states, typically based on some nonlinear optical interaction. In contrast, on-demand single-photon sources were also reported, exploiting the quantized level structure of matter systems. These sources, however, lead to highly impure output states, composed mostly of vacuum. While such impure states may still exhibit certain single-photon-like features such as anti-bunchin…
Characterization of Hong-Ou-Mandel bunched states by quantum homodyne tomography
We experimentally demonstrate quantum homodyne tomography of Hong-Ou-Mandel bunched states, which are created by dynamically adjusting emission timings of two heralded single photons using coupled cavities.
Quantum Nondemolition Gate Operations and Measurements in Real Time on Fluctuating Signals
We demonstrate an optical quantum nondemolition (QND) interaction gate with a bandwidth of about 100 MHz. Employing this gate, we are able to perform QND measurements in real time on randomly fluctuating signals. Our QND gate relies on linear optics and offline-prepared squeezed states. In contrast to previous demonstrations on narrow sideband modes, our gate is compatible with quantum states temporally localized in a wave-packet mode including non-Gaussian quantum states. This is the cornerstone of realizing quantum error correction and universal gate operations.