0000000000172831

AUTHOR

Kan Takase

showing 3 related works from this author

Heralded creation of photonic qudits from parametric down conversion using linear optics

2017

We propose an experimental scheme to generate, in a heralded fashion, arbitrary quantum superpositions of two-mode optical states with a fixed total photon number $n$ based on weakly squeezed two-mode squeezed state resources (obtained via weak parametric down conversion), linear optics, and photon detection. Arbitrary $d$-level (qudit) states can be created this way where $d=n+1$. Furthermore, we experimentally demonstrate our scheme for $n=2$. The resulting qutrit states are characterized via optical homodyne tomography. We also discuss possible extensions to more than two modes concluding that, in general, our approach ceases to work in this case. For illustration and with regards to pos…

PhysicsQuantum PhysicsPhotonbusiness.industryFOS: Physical sciencesQuantum Physics01 natural sciences010309 opticsSuperposition principleOpticsSpontaneous parametric down-conversionQuantum error correctionQuantum mechanicsQubit0103 physical sciencesQutrit010306 general physicsbusinessQuantum Physics (quant-ph)QuantumSqueezed coherent state
researchProduct

Optical quantum information processing and storage

2018

Here we report our recent experimental progresses in optical quantum information processing. In particular, the following topics are included. First, we extend the heralding scheme to multi-mode states and demonstrate heralded creation of qutrit states. Next, we demonstrate storage of single-photon states and synchronized release of them. Then, we demonstrate real-time acquisition of quadrature values of heralded states by making use of an exponentially rising shape of wave-packets. Finally, we demonstrate cluster states in an arbitrarily long chain in the longitudinal direction.

010309 opticsQuantum opticsPhysics0103 physical sciencesStatistical physicsQuantum entanglementQutrit010306 general physicsQuantum information processing01 natural sciencesLong chainQuadrature (astronomy)Longitudinal directionQuantum Communications and Quantum Imaging XVI
researchProduct

Quantum teleportation of an optical qutrit

2017

Quantum teleportation is an important building block of quantum information processing. For practical applications, a quantum teleporter with the potential to include quantum error correction should be realized.

PhysicsQuantum networkQuantum PhysicsQuantum capacityQuantum channel01 natural sciences010305 fluids & plasmasQuantum technologyComputer Science::Emerging TechnologiesQuantum error correctionQuantum mechanicsQubit0103 physical sciencesQuantum information010306 general physicsQuantum teleportation2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC)
researchProduct