0000000000173190
AUTHOR
Esther Camp
Nanog Regulates Proliferation During Early Fish Development
Abstract Nanog is involved in controlling pluripotency and differentiation of stem cells in vitro. However, its function in vivo has been studied only in mouse embryos and various reports suggest that Nanog may not be required for the regulation of differentiation. To better understand endogenous Nanog function, more animal models should be introduced to complement the murine model. Here, we have identified the homolog of the mammalian Nanog gene in teleost fish and describe the endogenous expression of Ol-Nanog mRNA and protein during medaka (Oryzias latipes) embryonic development and in the adult gonads. Using medaka fish as a vertebrate model to study Nanog function, we demonstrate that …
Nanog Regulates Primordial Germ Cell Migration Through Cxcr4b
Abstract Gonadal development in vertebrates depends on the early determination of primordial germ cells (PGCs) and their correct migration to the sites where the gonads develop. Several genes have been implicated in PGC specification and migration in vertebrates. Additionally, some of the genes associated with pluripotency, such as Oct4 and Nanog, are expressed in PGCs and gonads, suggesting a role for these genes in maintaining pluripotency of the germ lineage, which may be considered the only cell type that perpetually maintains stemness properties. Here, we report that medaka Nanog (Ol-Nanog) is expressed in the developing PGCs. Depletion of Ol-Nanog protein causes aberrant migration of …