0000000000173248
AUTHOR
Aamir Anwar
A Deep Learning-Based Framework for Feature Extraction and Classification of Intrusion Detection in Networks
An intrusion detection system, often known as an IDS, is extremely important for preventing attacks on a network, violating network policies, and gaining unauthorized access to a network. The effectiveness of IDS is highly dependent on data preprocessing techniques and classification models used to enhance accuracy and reduce model training and testing time. For the purpose of anomaly identification, researchers have developed several machine learning and deep learning-based algorithms; nonetheless, accurate anomaly detection with low test and train times remains a challenge. Using a hybrid feature selection approach and a deep neural network- (DNN-) based classifier, the authors of this re…
An Ensemble Model for Consumer Emotion Prediction Using EEG Signals for Neuromarketing Applications.
Traditional advertising techniques seek to govern the consumer’s opinion toward a product, which may not reflect their actual behavior at the time of purchase. It is probable that advertisers misjudge consumer behavior because predicted opinions do not always correspond to consumers’ actual purchase behaviors. Neuromarketing is the new paradigm of understanding customer buyer behavior and decision making, as well as the prediction of their gestures for product utilization through an unconscious process. Existing methods do not focus on effective preprocessing and classification techniques of electroencephalogram (EEG) signals, so in this study, an effective method for preprocessing and clas…
Malware Detection in Internet of Things (IoT) Devices Using Deep Learning
Internet of Things (IoT) devices usage is increasing exponentially with the spread of the internet. With the increasing capacity of data on IoT devices, these devices are becoming venerable to malware attacks; therefore, malware detection becomes an important issue in IoT devices. An effective, reliable, and time-efficient mechanism is required for the identification of sophisticated malware. Researchers have proposed multiple methods for malware detection in recent years, however, accurate detection remains a challenge. We propose a deep learning-based ensemble classification method for the detection of malware in IoT devices. It uses a three steps approach; in the first step, data is prep…
A Novel Approach to Automate Complex Software Modularization Using a Fact Extraction System
Complex software systems that support organizations are updated regularly, which can erode system architectures. Moreover, documentation is rarely synchronized with the changes to the software system. This creates a slew of issues for future software maintenance. To this goal, information extraction tools use exact approaches to extract entities and their corresponding relationships from source code. Such exact approaches extract all features, including those that are less prominent and may not be significant for modularization. In order to resolve the issue, this work proposes an enhanced approximate information extraction approach, namely, fact extractor system for Java applications (FESJ…
A comprehensive skills analysis of novice software developers working in the professional software development industry
Measuring and evaluating a learner’s learning ability is always the focus of every person whose aim is to develop strategies and plans for their learners to improve the learning process. For example, classroom assessments, self-assessment using computer systems such as Intelligent Tutoring Systems (ITS), and other approaches are available. Assessment of metacognition is one of these techniques. Having the ability to evaluate and monitor one’s learning is known as metacognition. An individual can then propose adjustments to their learning process based on this assessment. By monitoring, improving, and planning their activities, learners who can manage their cognitive skills are better able t…
Machine Learning: The Backbone of Intelligent Trade Credit-Based Systems
Technology has turned into a significant differentiator in the money and traditional recordkeeping systems for the financial industry. To depict two customers as potential investors, it is mandatory to give the complex innovation that they anticipate and urge to purchase. In any case, it is difficult to keep on top of and be a specialist in each of the new advancements that are accessible. By reappropriating IT administrations, monetary administrations firms can acquire prompt admittance to the most recent ability and direction. Financial systems, along with machine learning (ML) algorithms, are vital for critical concerns like secure financial transactions and automated trading. These are …
Classification of EEG signals for prediction of epileptic seizures
Epilepsy is a common brain disorder that causes patients to face multiple seizures in a single day. Around 65 million people are affected by epilepsy worldwide. Patients with focal epilepsy can be treated with surgery, whereas generalized epileptic seizures can be managed with medications. It has been noted that in more than 30% of cases, these medications fail to control epileptic seizures, resulting in accidents and limiting the patient’s life. Predicting epileptic seizures in such patients prior to the commencement of an oncoming seizure is critical so that the seizure can be treated with preventive medicines before it occurs. Electroencephalogram (EEG) signals of patients recorded to ob…
An Enhanced Multifactor Multiobjective Approach for Software Modularization
Complex software systems, meant to facilitate organizations, undergo frequent upgrades that can erode the system architectures. Such erosion makes understandability and maintenance a challenging task. To this end, software modularization provides an architectural-level view that helps to understand system architecture from its source code. For modularization, nondeterministic search-based optimization uses single-factor single-objective, multifactor single-objective, and single-factor multiobjective, which have been shown to outperform deterministic approaches. The proposed MFMO approach, which uses both a heuristic (Hill Climbing and Genetic) and a meta-heuristic (nondominated sorting gene…
Applying Real-Time Dynamic Scaffolding Techniques during Tutoring Sessions Using Intelligent Tutoring Systems
An intelligent tutoring system (ITS) is a computer system or software application that is built to replicate human tutors by supporting the theory of “learning by doing.” Even though ITSs have been proven to be successful in academic studies, they still have not found large adoption by the industry due to the complexities of building such systems due to the high technical expertise and domain knowledge requirements. Attempts have been made to build authoring tools that can provide assistance in building tutoring systems; however, most of these tools are targeted toward authors that have considerable programming experience. This research proposes an authoring tool for ITS, which is targeted …
An Ensemble Learning Method for Emotion Charting Using Multimodal Physiological Signals
Emotion charting using multimodal signals has gained great demand for stroke-affected patients, for psychiatrists while examining patients, and for neuromarketing applications. Multimodal signals for emotion charting include electrocardiogram (ECG) signals, electroencephalogram (EEG) signals, and galvanic skin response (GSR) signals. EEG, ECG, and GSR are also known as physiological signals, which can be used for identification of human emotions. Due to the unbiased nature of physiological signals, this field has become a great motivation in recent research as physiological signals are generated autonomously from human central nervous system. Researchers have developed multiple methods for …