0000000000173283

AUTHOR

K. Boguslavski

showing 7 related works from this author

Highly occupied gauge theories in 2 + 1 dimensions : a self-similar attractor

2019

Motivated by the boost-invariant Glasma state in the initial stages in heavy-ion collisions, we perform classical-statistical simulations of SU(2) gauge theory in 2+1 dimensional space-time both with and without a scalar field in the adjoint representation. We show that irrespective of the details of the initial condition, the far-from-equilibrium evolution of these highly occupied systems approaches a unique universal attractor at high momenta that is the same for the gauge and scalar sectors. We extract the scaling exponents and the form of the distribution function close to this non-thermal fixed point. We find that the dynamics are governed by an energy cascade to higher momenta with sc…

quark-gluon plasmaScalar (mathematics)Adjoint representationhep-latFOS: Physical scienceshiukkasfysiikka114 Physical sciences01 natural sciencesComputer Science::Digital Librariessymbols.namesakeHigh Energy Physics - LatticeHigh Energy Physics - Phenomenology (hep-ph)Correlation functionfysikk0103 physical sciencesAttractorquantum chromodynamicsGauge theory010306 general physicsUNIVERSAL DYNAMICSParticle Physics - PhenomenologyMathematical physicsDebyePhysics:Matematikk og Naturvitenskap: 400::Fysikk: 430 [VDP]010308 nuclear & particles physicsHigh Energy Physics - Lattice (hep-lat)finite temperature field theoryParticle Physics - Latticehep-ph115 Astronomy Space scienceHigh Energy Physics - PhenomenologyDistribution functionsymbolsScalar fieldrelativistic heavy-ion collisions
researchProduct

Broad excitations in a 2+1D overoccupied gluon plasma

2021

Motivated by the initial stages of high-energy heavy-ion collisions, we study excitations of far-from-equilibrium 2+1 dimensional gauge theories using classical-statistical lattice simulations. We evolve field perturbations over a strongly overoccupied background undergoing self-similar evolution. While in 3+1D the excitations are described by hard-thermal loop theory, their structure in 2+1D is nontrivial and nonperturbative. These nonperturbative interactions lead to broad excitation peaks in spectral and statistical correlation functions. Their width is comparable to the frequency of soft excitations, demonstrating the absence of soft quasiparticles in these theories. Our results also su…

Nuclear and High Energy PhysicsCOLLISIONSNuclear TheoryField (physics)FOS: Physical sciencesLattice QCDQC770-798hiukkasfysiikka01 natural sciences114 Physical sciencesNuclear Theory (nucl-th)High Energy Physics - Phenomenology (hep-ph)High Energy Physics - LatticeNuclear and particle physics. Atomic energy. Radioactivity0103 physical sciencesPerturbative QCDfysikkField theory (psychology)Gauge theory010306 general physicsKINETIC-THEORYUNIVERSAL DYNAMICSPhysics:Matematikk og Naturvitenskap: 400::Fysikk: 430 [VDP]MASS SCALENUCLEI010308 nuclear & particles physicsHigh Energy Physics - Lattice (hep-lat)kvarkki-gluoniplasmaPerturbative QCDLattice QCDFIELD-THEORY3. Good healthGluonHigh Energy Physics - PhenomenologyQuantum electrodynamicsQuark–gluon plasmaQuasiparticleQuark-Gluon PlasmaGAUGE-THEORIESJournal of High Energy Physics
researchProduct

Attractive versus repulsive interactions in the Bose-Einstein condensation dynamics of relativistic field theories

2017

We study the impact of attractive self-interactions on the nonequilibrium dynamics of relativistic quantum fields with large occupancies at low momenta. Our primary focus is on Bose-Einstein condensation and nonthermal fixed points in such systems. As a model system we consider O(N)-symmetric scalar field theories. We use classical-statistical real-time simulations, as well as a systematic 1/N expansion of the quantum (2PI) effective action to next-to-leading order. When the mean self-interactions are repulsive, condensation occurs as a consequence of a universal inverse particle cascade to the zero-momentum mode with self-similar scaling behavior. For attractive mean self-interactions the …

PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)axionsAnnihilationta114Field (physics)010308 nuclear & particles physicsFOS: Physical sciencesBose-Einstein condensatesCharge (physics)01 natural scienceslaw.inventionHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Q-balllawQuantum electrodynamics0103 physical sciences010306 general physicsScalar fieldQuantumEffective actionBose–Einstein condensateAstrophysics - Cosmology and Nongalactic AstrophysicsPhysical Review D
researchProduct

Spectral function of fermions in a highly occupied non-Abelian plasma

2022

We develop a method to obtain fermion spectral functions non-perturbatively in a non-Abelian gauge theory with high occupation numbers of gauge fields. After recovering the free field case, we extract the spectral function of fermions in a highly occupied non-Abelian plasma close to its non-thermal fixed point, i.e., in a self-similar regime of the non-equilibrium dynamics. We find good agreement with hard loop perturbation theory for medium-induced masses, dispersion relations and quasiparticle residues. We also extract the full momentum dependence of the damping rate of the collective excitations.

Heavy-ion collisionsNuclear and High Energy PhysicsNuclear Theoryquark-gluon plasmanonequilibrium QFTThermal QFTHigh Energy Physics - Lattice (hep-lat)Quark-gluon plasmakvarkki-gluoniplasmaFOS: Physical scienceshard-thermal loopheavy-ion collisionsspectral functionhiukkasfysiikkathermal QFT114 Physical sciencesSpectral functionNuclear Theory (nucl-th)High Energy Physics - PhenomenologyHigh Energy Physics - LatticeHigh Energy Physics - Phenomenology (hep-ph)Hard-thermal loopkvanttikenttäteoriaNonequilibrium QFT
researchProduct

Heavy quark momentum diffusion coefficient in 3D gluon plasma

2020

We study the heavy-quark momentum diffusion coefficient in far from equilibrium gluon plasma in a self-similar regime using real-time lattice techniques. We use 3 methods for the extraction: an unequal time electric field 2-point correlator integrated over the time difference, a spectral reconstruction (SR) method based on the measured equal time electric field correlator and a kinetic theory (KT) formula. The time-evolution of the momentum diffusion coefficient extracted using all methods is consistent with an approximate $t^{\frac{-1}{2}}$ power law. We also study the extracted diffusion coefficient as a function of the upper limit of the time integration and observe that including the in…

QuarkNuclear and High Energy PhysicsInfraredInitial stagesTransporthep-latFOS: Physical sciencesGlasmaHeavy flavour01 natural sciencesPower law114 Physical sciencesMomentum diffusionDiffusionHigh Energy Physics - LatticeHigh Energy Physics - Phenomenology (hep-ph)Electric fieldLattice (order)0103 physical sciencesPre-equilibrium dynamics010306 general physicsParticle Physics - PhenomenologyPhysics010308 nuclear & particles physicsHigh Energy Physics - Lattice (hep-lat)Particle Physics - Latticehep-phPlasmaGluonHigh Energy Physics - PhenomenologyQuantum electrodynamicsNuclear Physics A
researchProduct

Gauge-invariant condensation in the nonequilibrium quark-gluon plasma

2020

The large density of gluons, which is present shortly after a nuclear collision at very high energies, can lead to the formation of a condensate. We identify a gauge-invariant order parameter for condensation based on elementary non-perturbative excitations of the plasma, which are described by spatial Wilson loops. Using real-time lattice simulations, we demonstrate that a self-similar transport process towards low momenta builds up a macroscopic zero mode. Our findings reveal intriguing similarities to recent discoveries of condensation phenomena out of equilibrium in table-top experiments with ultracold Bose gases.

PhysicsCondensed Matter::Quantum GasesNuclear collisionZero mode010308 nuclear & particles physicsHigh Energy Physics::LatticeHigh Energy Physics - Lattice (hep-lat)Non-equilibrium thermodynamicsFOS: Physical sciencesPlasmaInvariant (physics)hiukkasfysiikka01 natural sciences3. Good healthGluonHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - LatticeQuantum Gases (cond-mat.quant-gas)Lattice (order)Quantum electrodynamics0103 physical sciencesQuark–gluon plasma010306 general physicsCondensed Matter - Quantum GasesPhysical Review D
researchProduct

Unraveling the nature of universal dynamics in $O(N)$ theories

2020

Many-body quantum systems far from equilibrium can exhibit universal scaling dynamics which defy standard classification schemes. Here, we disentangle the dominant excitations in the universal dynamics of highly-occupied $N$-component scalar systems using unequal-time correlators. While previous equal-time studies have conjectured the infrared properties to be universal for all $N$, we clearly identify for the first time two fundamentally different phenomena relevant at different $N$. We find all $N\geq3$ to be indeed dominated by the same Lorentzian ``large-$N$'' peak, whereas $N=1$ is characterized instead by a non-Lorentzian peak with different properties, and for $N=2$ we see a mixture …

PhysicsStatistical Mechanics (cond-mat.stat-mech)010308 nuclear & particles physicsDynamics (mechanics)Scalar (mathematics)FOS: Physical sciencesClassification schemeComputer Science::Digital Libraries01 natural sciencesTheoretical physicsHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Quantum Gases (cond-mat.quant-gas)0103 physical sciencesAutocatalytic reaction010306 general physicsCondensed Matter - Quantum GasesQuantumScalingCondensed Matter - Statistical Mechanics
researchProduct