High resolution luminescence spectroscopy and thermoluminescence of different size LaPO4:Eu3+ nanoparticles
T. G. acknowledges the ERDF PostDoc project No. 1.1.1.2/VIAA/1/16/215 (1.1.1.2/16/I/001). K. S. and K. L. acknowledge the Latvian National Research Program IMIS2. The authors from Vinča Institute of Nuclear Sciences acknowledge the financial support of the Ministry of Education, Science and Technological Development of the Republic of Serbia (Project No: 45020 and 172056 ).
Up-conversion luminescence of GdVO4:Nd3+/Er3+ and GdVO4:Nd3+/Ho3+ phosphors under 808 nm excitation
All authors acknowledge to the COST Action CM1403: The European upconversion network - from the design of photon-upconverting nanomaterials to biomedical applications (2014–2018). The authors from the University of Belgrade acknowledge the financial support of the Ministry of Education, Science and Technological Development of the Republic of Serbia (Project Nos. 45020 and 172056 ). K. S. acknowledges the Latvian National Research Program IMIS2 (Grant No. 302/2012 ). T. G. acknowledges the ERDF PostDoc project No. 1.1.1.2/VIAA/1/16/215 ( 1.1.1.2/16/I/001 ).
Synthesis, structure and spectroscopic properties of luminescent GdVO 4 :Dy 3+ and DyVO 4 particles
Part of this research was done during visit of D.J. to IFN-CNR CSMFO Lab. and FBK Photonics Unit, Povo-Trento, Italy, in the framework of the STSM (Grant No. 38223) from the project: COST Action MP 1401 Advanced Fibre Laser and Coherent Source as tools for Society, Manufacturing and Lifescience” (2014e2018). The authors from Vinca Institute of Nuclear Sciences acknowledge the financial support of the Ministry of Education, Science and Tech-nological Development of the Republic of Serbia (Project No: 45020 and 172056). L.T.N. Tran acknowledges the scholarship of the Ministry of Education and Training, Vietnam International Education Development. T. G. acknowledges the ERDF PostDoc project No…
Particle size effects on the structure and emission of Eu3+: LaPO4 and EuPO4 phosphors
The authors acknowledge the financial support of the Ministry of Education, Science and Technological Development of the Republic of Serbia (Projects nos. 45020 and 172056). T.G acknowledges to the ERDF PostDoc project No. 1.1.1.2/VIAA/1/16/215 (1.1.1.2/16/I/001).
Synthesis of Multifunctional Inorganic Materials
Abstract Both, novel and older widely and routinely used methods of chemical synthesis fornew multifunctional inorganic (nano) materials with different sizes and morphologies are reviewed and summarized in this chapter. Illustrative examples of micro- and nanoparticle preparations are provided regarding different applications: renewable and sustainable energy harvesting, water splitting and hydrogen generation, fuel and solar cell devices, luminescent materials for white light–emitting diodes and clean environment. We give our perspective on the current status of the topic: methods of colloidal chemistry, coprecipitation, reverse-micelle technique, sol–gel, spray pyrolysis, microwave-assist…
Multicolor upconversion luminescence of GdVO4:Ln3+/Yb3+ (Ln3+ = Ho3+, Er3+, Tm3+, Ho3+/Er3+/Tm3+) nanorods
Lanthanide-doped GdVO4 nanorods that exhibit upconversion emission under 982 nm excitation have been prepared by a facile room-temperature chemical co-precipitation method followed by a subsequent annealing at temperatures of 600 degrees C, 800 degrees C and 1000 degrees C. Multicolor upconversion emission, including white, was achieved by tuning the concentrations of dopant lanthanide ions (Ho3+, Er3+, Tm3+ and Yb3+) in GdVO4. It is found that four GdVO4 samples emit light with the white chromaticity coordinates of (0.326, 0.339), (0.346, 0.343), (0.323, 0327) and (0.342, 0.340) respectively, under a single-wavelength NIR excitation. These coordinates are very close to the standard equal e…