0000000000173876

AUTHOR

Ronald A. Backer

A central role for Notch in effector CD8(+) T cell differentiation.

Activated CD8(+) T cells choose between terminal effector cell (TEC) or memory precursor cell (MPC) fates. We found that the signaling receptor Notch controls this 'choice'. Notch promoted the differentiation of immediately protective TECs and was correspondingly required for the clearance of acute infection with influenza virus. Notch activated a major portion of the TEC-specific gene-expression program and suppressed the MPC-specific program. Expression of Notch was induced on naive CD8(+) T cells by inflammatory mediators and interleukin 2 (IL-2) via pathways dependent on the metabolic checkpoint kinase mTOR and the transcription factor T-bet. These pathways were subsequently amplified d…

research product

Revisiting Current Concepts on the Tolerogenicity of Steady-State Dendritic Cell Subsets and Their Maturation Stages

Abstract The original concept stated that immature dendritic cells (DC) act tolerogenically whereas mature DC behave strictly immunogenically. Meanwhile, it is also accepted that phenotypically mature stages of all conventional DC subsets can promote tolerance as steady-state migratory DC by transporting self-antigens to lymph nodes to exert unique functions on regulatory T cells. We propose that in vivo 1) there is little evidence for a tolerogenic function of immature DC during steady state such as CD4 T cell anergy induction, 2) all tolerance as steady-state migratory DC undergo common as well as subset-specific molecular changes, and 3) these changes differ by quantitative and qualitati…

research product

E-Cadherin is Dispensable to Maintain Langerhans Cells in the Epidermis.

The cell adhesion molecule E-cadherin is a major component of adherens junctions and marks Langerhans cells (LC), the only dendritic cell (DC) population of the epidermis. LC form a dense network and attach themselves to the surrounding keratinocytes via homophilic E-cadherin binding. LC activation, mobilization, and migration require a reduction in LC E-cadherin expression. To determine whether E-cadherin plays a role in regulating LC homeostasis and function, we generated CD11c-specific E-cadherin knockout mice (CD11c-Ecaddel). In the absence of E-cadherin−mediated cell adhesion, LC numbers remained stable and similar as in control mice, even in aged animals. Intriguingly, E-cadherin−defi…

research product

Notch in T Cell Differentiation: All Things Considered.

Differentiation of naive T cells into effector cells is required for optimal protection against different classes of microbial pathogen and for the development of immune memory. Recent findings have revealed important roles for the Notch signaling pathway in T cell differentiation into all known effector subsets, raising the question of how this pathway controls such diverse differentiation programs. Studies in preclinical models support the therapeutic potential of manipulating the Notch pathway to alleviate immune pathology, highlighting the importance of understanding the mechanisms through which Notch regulates T cell differentiation and function. We review these findings here, and outl…

research product

The Fate Choice Between Effector and Memory T Cell Lineages: Asymmetry, Signal Integration, and Feedback to Create Bistability

Abstract CD8+ T cells clear primary infections with intracellular pathogens and provide long-term immunity against reinfection. Two different types of CD8+ T cells are responsible for these functions: short-lived effector T cells and memory T cells. The cellular relationship between these two types of CD8+ T cells has been subject to much investigation. Both cell types can derive from a single naive CD8+ T cell precursor. Their generation requires a fate choice early during a T cell response. As a result, two populations of T cells emerge. One of these consists of terminally differentiated short-lived effector T cells. The other contains cells able to develop into long-lived memory T cells.…

research product

Posttranslational modifications by ADAM10 shape myeloid antigen-presenting cell homeostasis in the splenic marginal zone

The spleen contains phenotypically and functionally distinct conventional dendritic cell (cDC) subpopulations, termed cDC1 and cDC2, which each can be divided into several smaller and less well-characterized subsets. Despite advances in understanding the complexity of cDC ontogeny by transcriptional programming, the significance of posttranslational modifications in controlling tissue-specific cDC subset immunobiology remains elusive. Here, we identified the cell-surface–expressed A-disintegrin-and-metalloproteinase 10 (ADAM10) as an essential regulator of cDC1 and cDC2 homeostasis in the splenic marginal zone (MZ). Mice with a CD11c-specific deletion of ADAM10 (ADAM10(ΔCD11c)) exhibited a …

research product