Efficient generation of restricted growth words
A length n restricted growth word is a word w=w"1w"2...w"n over the set of integers where w"1=0 and each w"i, i>1, lies between 0 and the value of a word statistics of the prefix w"1w"2...w"i"-"1 of w, plus one. Restricted growth words simultaneously generalize combinatorial objects as restricted growth functions, staircase words and ascent or binary sequences. Here we give a generic generating algorithm for restricted growth words. It produces a Gray code and runs in constant average time provided that the corresponding statistics has some local properties.
Restricted 123-avoiding Baxter permutations and the Padovan numbers
AbstractBaxter studied a particular class of permutations by considering fixed points of the composite of commuting functions. This class is called Baxter permutations. In this paper we investigate the number of 123-avoiding Baxter permutations of length n that also avoid (or contain a prescribed number of occurrences of) another certain pattern of length k. In several interesting cases the generating function depends only on k and is expressed via the generating function for the Padovan numbers.
Equivalence classes of permutations modulo excedances
International audience
Combinatorial Gray codes for classes of pattern avoiding permutations
The past decade has seen a flurry of research into pattern avoiding permutations but little of it is concerned with their exhaustive generation. Many applications call for exhaustive generation of permutations subject to various constraints or imposing a particular generating order. In this paper we present generating algorithms and combinatorial Gray codes for several families of pattern avoiding permutations. Among the families under consideration are those counted by Catalan, Schr\"oder, Pell, even index Fibonacci numbers and the central binomial coefficients. Consequently, this provides Gray codes for $\s_n(\tau)$ for all $\tau\in \s_3$ and the obtained Gray codes have distances 4 and 5.
Loop-free Gray code algorithm for the e-restricted growth functions
The subject of Gray codes algorithms for the set partitions of {1,2,...,n} had been covered in several works. The first Gray code for that set was introduced by Knuth (1975) [5], later, Ruskey presented a modified version of [email protected]?s algorithm with distance two, Ehrlich (1973) [3] introduced a loop-free algorithm for the set of partitions of {1,2,...,n}, Ruskey and Savage (1994) [9] generalized [email protected]?s results and give two Gray codes for the set of partitions of {1,2,...,n}, and recently, Mansour et al. (2008) [7] gave another Gray code and loop-free generating algorithm for that set by adopting plane tree techniques. In this paper, we introduce the set of e-restricte…