Infrared laser threshold magnetometry with a NV doped diamond intracavity etalon
International audience; We propose a hybrid laser system consisting of a semiconductor external cavity laser associated to an intra-cavity diamond etalon doped with nitrogen-vacancy color centers. We consider laser emission tuned to the infrared absorption line that is enhanced under the magnetic field dependent nitrogen-vacancy electron spin resonance and show that this architecture leads to a compact solid-state magnetometer that can be operated at room-temperature. The sensitivity to the magnetic field limited by the photon shot-noise of the output laser beam is estimated to be less than 1 pT/ √ Hz. Unlike usual NV center infrared magnetometry, this method would not require an external f…
Miniature Cavity-Enhanced Diamond Magnetometer
We present a highly sensitive miniaturized cavity-enhanced room-temperature magnetic-field sensor based on nitrogen-vacancy (NV) centers in diamond. The magnetic resonance signal is detected by probing absorption on the 1042\,nm spin-singlet transition. To improve the absorptive signal the diamond is placed in an optical resonator. The device has a magnetic-field sensitivity of 28 pT/$\sqrt{\rm{Hz}}$, a projected photon shot-noise-limited sensitivity of 22 pT/$\sqrt{\rm{Hz}}$ and an estimated quantum projection-noise-limited sensitivity of 0.43 pT/$\sqrt{\rm{Hz}}$ with the sensing volume of $\sim$ 390 $\mu$m $\times$ 4500 $\mu$m$^{2}$. The presented miniaturized device is the basis for an e…
On the Possibility of Miniature Diamond-Based Magnetometers Using Waveguide Geometries
Micromachines 9(6), 276 (2018). doi:10.3390/mi9060276
Infrared laser magnetometry with a NV doped diamond intracavity etalon
We propose an hybrid laser system consisting of a semiconductor external cavity laser associated to an intra-cavity diamond etalon doped with nitrogen-vacancy color centers. We consider laser emission tuned to the infrared absorption line that is enhanced under the magnetic field dependent nitrogen-vacancy electron spin resonance and show that this architecture leads to a compact solid-state magnetometer that can be operated at room-temperature. The sensitivity to the magnetic field limited by the photon shot-noise of the output laser beam is estimated to be around $250~\mathrm{fT/\sqrt{Hz}}$. Unlike usual NV center infrared magnetometry, this method would not require an external frequency …
Imaging Topological Spin Structures Using Light-Polarization and Magnetic Microscopy
We present an imaging modality that enables detection of magnetic moments and their resulting stray magnetic fields. We use wide-field magnetic imaging that employs a diamond-based magnetometer and has combined magneto-optic detection (e.g. magneto-optic Kerr effect) capabilities. We employ such an instrument to image magnetic (stripe) domains in multilayered ferromagnetic structures.