0000000000174749

AUTHOR

T. Schwentick

showing 3 related works from this author

Positive Versions of Polynomial Time

1998

Abstract We show that restricting a number of characterizations of the complexity class P to be positive (in natural ways) results in the same class of (monotone) problems, which we denote by posP . By a well-known result of Razborov, posP is a proper subclass of the class of monotone problems in P . We exhibit complete problems for posP via weak logical reductions, as we do for other logically defined classes of problems. Our work is a continuation of research undertaken by Grigni and Sipser, and subsequently Stewart; indeed, we introduce the notion of a positive deterministic Turing machine and consequently solve a problem posed by Grigni and Sipser.

Class (set theory)Computational complexity theoryAlgorithmic logicTheoretical Computer ScienceComputer Science ApplicationsCombinatoricsTuring machinesymbols.namesakeMonotone polygonNon-deterministic Turing machineComputational Theory and MathematicsComplexity classsymbolsTime complexityMathematicsInformation Systems
researchProduct

Graph connectivity and monadic NP

2002

Ehrenfeucht games are a useful tool in proving that certain properties of finite structures are not expressible by formulas of a certain type. In this paper a new method is introduced that allows the extension of a local winning strategy for Duplicator, one of the two players in Ehrenfeucht games, to a global winning strategy. As an application it is shown that graph connectivity cannot be expressed by existential second-order formulas, where the second-order quantification is restricted to unary relations (monadic NP), even, in the presence of a built-in linear order. As a second application it is stated, that, on the other hand, the presence of a linear order increases the power of monadi…

Discrete mathematicsComputer Science::Computer Science and Game TheoryUnary operationComputational complexity theoryRelation (database)Extension (predicate logic)Type (model theory)CombinatoricsTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESComputer Science::Logic in Computer ScienceOrder (group theory)Game theoryComputer Science::Formal Languages and Automata TheoryConnectivityMathematicsProceedings 35th Annual Symposium on Foundations of Computer Science
researchProduct

On positive P

2002

Continuing a line of research opened up by Grigni and Sipser (1992) and further pursued by Stewart (1994), we show that a wide variety of equivalent characterizations of P still remain equivalent when restricted to be positive. All these restrictions thus define the same class posP, a proper subclass of monP, the class of monotone problems in P. We also exhibit complete problems for posP under very weak reductions.

Discrete mathematicsCombinatoricsClass (set theory)Monotone polygonBoolean circuitComplexity classVariety (universal algebra)Boolean functionTime complexitySubclassMathematicsProceedings of Computational Complexity (Formerly Structure in Complexity Theory)
researchProduct