0000000000174751
AUTHOR
C. Lautemann
Positive Versions of Polynomial Time
Abstract We show that restricting a number of characterizations of the complexity class P to be positive (in natural ways) results in the same class of (monotone) problems, which we denote by posP . By a well-known result of Razborov, posP is a proper subclass of the class of monotone problems in P . We exhibit complete problems for posP via weak logical reductions, as we do for other logically defined classes of problems. Our work is a continuation of research undertaken by Grigni and Sipser, and subsequently Stewart; indeed, we introduce the notion of a positive deterministic Turing machine and consequently solve a problem posed by Grigni and Sipser.
On positive P
Continuing a line of research opened up by Grigni and Sipser (1992) and further pursued by Stewart (1994), we show that a wide variety of equivalent characterizations of P still remain equivalent when restricted to be positive. All these restrictions thus define the same class posP, a proper subclass of monP, the class of monotone problems in P. We also exhibit complete problems for posP under very weak reductions.
Circuit Lower Bounds via Ehrenfeucht-Fraisse Games
In this paper we prove that the class of functions expressible by first order formulas with only two variables coincides with the class of functions computable by AC/sup 0/ circuits with a linear number of gates. We then investigate the feasibility of using Ehrenfeucht-Fraisse games to prove lower bounds for that class of circuits, as well as for general AC/sup 0/ circuits.