0000000000174935

AUTHOR

Sergey Kovalenko

showing 13 related works from this author

The magnet of the scattering and neutrino detector for the SHiP experiment at CERN

2019

The Search for Hidden Particles (SHiP) experiment proposal at CERN demands a dedicated dipole magnet for its scattering and neutrino detector. This requires a very large volume to be uniformly magnetized at B > 1.2 T, with constraints regarding the inner instrumented volume as well as the external region, where no massive structures are allowed and only an extremely low stray field is admitted. In this paper we report the main technical challenges and the relevant design options providing a comprehensive design for the magnet of the SHiP Scattering and Neutrino Detector.

TechnologyPhysics - Instrumentation and Detectorswigglers and undulators)magnet: designPermanent magnet devicesPhysics::Instrumentation and Detectorsengineering01 natural sciences7. Clean energy09 Engineering030218 nuclear medicine & medical imagingradiation hardened magnetsSubatomär fysik0302 clinical medicineDipole magnetSubatomic PhysicsNeutrino detectorsDetectors and Experimental TechniquesInstruments & InstrumentationInstrumentationphysics.ins-detAcceleration cavities and magnets superconducting (high-temperature superconductor; radiation hardened magnets; normal-conducting; permanent magnet devices; wigglers and undulators)Mathematical PhysicsPhysics02 Physical SciencesLarge Hadron ColliderInstrumentation and Detectors (physics.ins-det)magnet: technologyNuclear & Particles Physicsbending magnetneutrino: detectorNeutrino detectornormal-conductingAcceleration cavities and magnets superconducting (high-temperature superconductorproposed experimentCERN LabRadiation hardened magnetsFOS: Physical sciencesNormal-conductingAccelerator Physics and InstrumentationNuclear physics03 medical and health sciences0103 physical sciencespermanent magnet devices[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Wigglers and undulators)normal-conducting magnetsScience & Technology010308 nuclear & particles physicsScatteringLarge detector systems for particle and astroparticle physicsAcceleratorfysik och instrumenteringLarge detector systems for particle physicsHigh temperature superconductors Neutrons Permanent magnets Ships Superconducting magnets Wigglers Astroparticle physics Comprehensive designs Massive structures Neutrino detectors Normal-conducting Radiation-hardened Ship experiments Technical challenges Particle detectorsVolume (thermodynamics)MagnetAcceleration cavities and magnets superconducting (high-temperature superconductor; Large detector systems for particle and astroparticle physics; Neutrino detectors; Normal-conducting; Permanent magnet devices; Radiation hardened magnets; Wigglers and undulators)High Energy Physics::Experimentneutrino detectors
researchProduct

Leptoquarks: Neutrino masses and related accelerator signals

2008

Leptoquark-Higgs interactions induce mixing between leptoquark (LQ) states with different chiralities once the electroweak symmetry is broken. In such LQ models Majorana neutrino masses are generated at 1-loop order. Here we calculate the neutrino mass matrix and explore the constraints on the parameter space enforced by the assumption that LQ-loops explain current neutrino oscillation data. LQs will be produced at the CERN LHC, if their masses are at or below the TeV scale. Since the fermionic decays of LQs are governed by the same Yukawa couplings, which are responsible for the nontrivial neutrino mass matrix, several decay branching ratios of LQ states can be predicted from measured neut…

PhysicsNuclear and High Energy PhysicsParticle physicsSterile neutrinoGauge bosonMuonPhysics::Instrumentation and DetectorsPhysics beyond the Standard ModelHigh Energy Physics::PhenomenologyFísicaNuclear physicsHiggs bosonHigh Energy Physics::ExperimentNeutrinoNeutrino oscillationLepton
researchProduct

A superformula for neutrinoless double beta decay II: The short range part

2000

A general Lorentz-invariant parameterization for the short-range part of the 0vBB decay rate is derived. Combined with the long range part already published this general parameterization in terms of effective B-L violating couplings allows one to extract the 0vBB limits on arbitrary lepton number violating theories.

PhysicsNuclear and High Energy PhysicsRange (particle radiation)Particle physicsHigh Energy Physics::PhenomenologyFísicaFOS: Physical sciencesLepton numberHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)SuperformulaDouble beta decayHigh Energy Physics::Experiment
researchProduct

Heavy Sterile Neutrinos in Tau Decays and the MiniBooNE Anomaly

2011

Current results of the MiniBooNE experiment show excess events that indicate neutrino oscillations, but only if one goes beyond the standard 3 family scenario. Recently a different explanation of the events has been given, not in terms of oscillations but by the production and decay of a massive sterile neutrino with large transition magnetic moment. We study the effect of such a sterile neutrino in the rare decays $\tau^- \rightarrow \mu^- \mu^+ \pi^- \nu$ and $\tau^{-}\rightarrow \mu^{-} \mu^{+} e^{-} \nu \nu$. We find that searches for these decays featuring displaced vertices between the $\mu^-$ and the other charged particles, constitute good tests for the existence of the sterile neut…

PhysicsNuclear and High Energy PhysicsParticle physicsSterile neutrinoMagnetic moment010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyFísicaFOS: Physical sciences01 natural sciences7. Clean energyCharged particleHigh Energy Physics - ExperimentNuclear physicsMiniBooNEHigh Energy Physics - PhenomenologyHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)0103 physical sciencesProduction (computer science)High Energy Physics::ExperimentAnomaly (physics)010306 general physicsNeutrino oscillation
researchProduct

B-meson to light-meson transition form factors

2007

We report a comprehensive set of results for B-meson heavy-to-light transition form factors calculated using a truncation of, and expression for, the transition amplitudes in which all elements are motivated by the study of Dyson-Schwinger equations in QCD. In this relativistic approach, which realizes confinement and dynamical chiral symmetry breaking, all physical values of momentum transfer in the transition form factors are simultaneously accessible. Our results can be useful in the analysis and correlation of the large body of data being accumulated at extant facilities, and thereby in probing the standard model and beyond.

PhysicsQuantum chromodynamicsNuclear and High Energy PhysicsParticle physicsBethe–Salpeter equationMesonHigh Energy Physics::PhenomenologyMomentum transferB mesonSymmetry breakingChiral symmetry breakingStandard ModelPhysical Review D
researchProduct

Form factors for semileptonic, nonleptonic, and rareB(Bs)meson decays

2012

We provide new values for the model parameters of the covariant constituent quark model (with built–in infrared confinement) in the meson sector by a fit to the leptonic decay constants and a number of electromagnetic decays. We then evaluate, in a parameter-free way, the form factors of the B(Bs) ! P(V ) transitions in the full kinematical region of momentum transfer. As an application of our results we calculate the widths of the nonleptonic Bs-decays into Ds D + , D � s D + s +D s D � + s

PhysicsNuclear and High Energy PhysicsParticle physicsMesonInfraredHigh Energy Physics::PhenomenologyMomentum transferForm factor (quantum field theory)Constituent quarkModel parametersNuclear physicsCP violationHigh Energy Physics::ExperimentCovariant transformationPhysical Review D
researchProduct

Extended Black Box Theorem for Lepton Number and Flavor Violating processes

2006

We revisit the well known "Black Box" theorem establishing a fundamental relation between the amplitude of neutrinoless double beta decay and the effective Majorana neutrino mass. We extend this theorem to the general case of arbitrary lepton number and lepton flavor violating (LFNV) processes and to the three generation Majorana neutrino mass matrix. We demonstrate the existence of a general set of one-to-one correspondence relations between the effective operators generating these processes, and elements of the neutrino mass matrix, such that if one of these two quantities vanishes the other is guaranteed to vanish as well, and moreover, if one of these quantities is non-zero the other is…

PhysicsNuclear and High Energy PhysicsParticle physicsPhysics beyond the Standard ModelHigh Energy Physics::PhenomenologyFísicaFOS: Physical sciencesLepton numberHigh Energy Physics - PhenomenologyMAJORANAHigh Energy Physics - Phenomenology (hep-ph)Double beta decayHigh Energy Physics::ExperimentNeutrinoNeutrino oscillationMajorana equationLepton
researchProduct

Fast simulation of muons produced at the SHiP experiment using Generative Adversarial Networks

2019

This paper presents a fast approach to simulating muons produced in interactions of the SPS proton beams with the target of the SHiP experiment. The SHiP experiment will be able to search for new long-lived particles produced in a 400~GeV$/c$ SPS proton beam dump and which travel distances between fifty metres and tens of kilometers. The SHiP detector needs to operate under ultra-low background conditions and requires large simulated samples of muon induced background processes. Through the use of Generative Adversarial Networks it is possible to emulate the simulation of the interaction of 400~GeV$/c$ proton beams with the SHiP target, an otherwise computationally intensive process. For th…

TechnologyPhysics - Instrumentation and DetectorsProtonPhysics::Instrumentation and DetectorsComputer sciencebackground: inducedNuclear TheoryDetector modelling and simulations I (interaction of radiation with matter interaction of photons with matter interaction of hadrons with matter etc); Simulation methods and programs01 natural sciences09 EngineeringHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]muon: momentumDetectors and Experimental TechniquesNuclear Experimentphysics.ins-detGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)InstrumentationInstruments & InstrumentationMathematical PhysicsDetector modelling and simulations I (interaction of radiation with matter interaction of photons with matter interaction of hadrons with matter etc)02 Physical Sciencesinteraction of photons with matterInstrumentation and Detectors (physics.ins-det)p: beammuon: productionDetector modelling and simulations INuclear & Particles Physicsinteraction of hadrons with matterParticle Physics - Experimentperformancedata analysis methodDetector modelling and simulations I (interaction of radiation with matterFOS: Physical sciencesAccelerator Physics and Instrumentation0103 physical sciencesnumerical methodsddc:610[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Aerospace engineering010306 general physicsnumerical calculationsetc)MuonScience & Technologyhep-ex010308 nuclear & particles physicsbusiness.industryNumerical analysisAcceleratorfysik och instrumenteringCERN SPSPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentSimulation methods and programsbusinessGenerative grammar
researchProduct

Neutrinoless Double-Electron Capture

2020

Double-beta processes play a key role in the exploration of neutrino and weak interaction properties, and in the searches for effects beyond the Standard Model. During the last half century many attempts were undertaken to search for double-beta decay with emission of two electrons, especially for its neutrinoless mode ($0\nu2\beta^-$), the latter being still not observed. Double-electron capture (2EC) was not in focus so far because of its in general lower transition probability. However, the rate of neutrinoless double-electron capture ($0\nu2$EC) can experience a resonance enhancement by many orders of magnitude in case the initial and final states are energetically degenerate. In the re…

Particle physicsNuclear TheoryAtomic Physics (physics.atom-ph)Electron capturePhysics beyond the Standard ModelFOS: Physical sciencesdouble beta decayGeneral Physics and Astronomyhiukkasfysiikka7. Clean energy01 natural sciencesResonance (particle physics)neutrinoless double beta decayPhysics - Atomic PhysicsNuclear Theory (nucl-th)High Energy Physics - Phenomenology (hep-ph)0103 physical sciencesNuclear MatrixRoad mapNuclear Experiment (nucl-ex)010306 general physicsNuclear theoryNuclear Experimentnuclear tests of fundamental interactionsPhysics010308 nuclear & particles physicsBeta DecayBolometersHigh Energy Physics - PhenomenologyPräzisionsexperimente - Abteilung BlaumNeutrinoydinfysiikka
researchProduct

Neutrinoless double beta decay and lepton number violation at the lhc

2013

10.1103/PhysRevD.88.011901

PhysicsNuclear and High Energy PhysicsParticle physicsNuclear TheoryHigh Energy Physics::PhenomenologyFOS: Physical sciencesFísicaCharge (physics)Lepton numberHigh Energy Physics - ExperimentDiquarkNuclear physicsNuclear Theory (nucl-th)High Energy Physics - Experiment (hep-ex)High Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Double beta decayLeptoquarkBeta (velocity)Invariant massHigh Energy Physics::ExperimentSensitivity (control systems)
researchProduct

Distribution and density of CD1a+ and CD83+ dendritic cells in HPV-associated laryngeal papillomas.

2009

Summary Background Respiratory papillomatosis associated with human papilloma virus (HPV) infection is the most common benign laryngeal neoplasm. The age of patients at disease onset, HPV type, number of surgeries are well known prognostic factors of the disease course. The correlation between dendritic cell (DC) density in tumor tissue and clinical prognosis was established. Aim The aim of our study was to estimate the density of DC in laryngeal papillomas associated with HPV types 6/11 infection and to evaluate the relationship between the number of DC and the disease severity. Materials and methods Our study included 40 randomly selected biopsy specimens from patients with HPV-positive l…

MalePathologymedicine.medical_specialtyAdolescentImmunoglobulinsCell CountAntigens CD1Young AdultAntigens CDImmunopathologyBiopsymedicineHumansTissue DistributionChildLaryngeal NeoplasmsRetrospective StudiesLamina propriaMembrane Glycoproteinsmedicine.diagnostic_testPapillomaBenign Laryngeal Neoplasmbusiness.industryHuman papillomavirus 11Papillomavirus InfectionsInfantGeneral MedicineDendritic Cellsmedicine.diseaseHuman papillomavirus 6Epitheliummedicine.anatomical_structureOtorhinolaryngologyChild PreschoolPediatrics Perinatology and Child HealthPapillomaFemaleRecurrent Respiratory PapillomatosisLarynxbusinessLaryngeal papillomatosisInternational journal of pediatric otorhinolaryngology
researchProduct

Neutrinoless double beta decay and QCD running at low energy scales

2018

There is a common belief that the main uncertainties in the theoretical analysis of neutrinoless double beta ($0\nu\beta\beta$) decay originate from the nuclear matrix elements. Here, we uncover another previously overlooked source of potentially large uncertainties stemming from non-perturbative QCD effects. Recently perturbative QCD corrections have been calculated for all dimension 6 and 9 effective operators describing $0\nu\beta\beta$-decay and their importance for a reliable treatment of $0\nu\beta\beta$-decay has been demonstrated. However, these perturbative results are valid at energy scales above $\sim 1$ GeV, while the typical $0\nu\beta\beta$-scale is about $\sim 100$ MeV. In vi…

Quantum chromodynamicsPhysicsCoupling constantParticle physics010308 nuclear & particles physicsScalar (mathematics)Perturbative QCDFOS: Physical sciences01 natural sciencesHigh Energy Physics - PhenomenologyOperator (computer programming)High Energy Physics - Phenomenology (hep-ph)Double beta decay0103 physical sciencesTensorPerturbation theory (quantum mechanics)010306 general physicsPhysical Review
researchProduct

The experimental facility for the Search for Hidden Particles at the CERN SPS

2019

The Search for Hidden Particles (SHiP) Collaboration has shown that the CERN SPS accelerator with its 400 $\mathrm{\small GeV/c}$ proton beam offers a unique opportunity to explore the Hidden Sector. The proposed experiment is an intensity frontier experiment which is capable of searching for hidden particles through both visible decays and through scattering signatures from recoil of electrons or nuclei. The high-intensity experimental facility developed by the SHiP collaboration is based on a number of key features and developments which provide the possibility of probing a large part of the parameter space for a wide range of models with light long-lived superweakly interacting particles…

TechnologyPhysics - Instrumentation and Detectorsbackground: inducedlarge detector systems for particle and astroparticle physicsSPSbeam transportElectron7. Clean energy01 natural sciences09 Engineeringdark matter detectors (wimps axions etc.)High Energy Physics - Experiment030218 nuclear medicine & medical imaginglaw.inventionNeutrino detectorHigh Energy Physics - Experiment (hep-ex)0302 clinical medicineRecoillawetc.)[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Neutrino detectorsDetectors and Experimental TechniquesNuclear Experimentphysics.ins-detInstruments & InstrumentationInstrumentationbackground: suppressionMathematical Physicsnucleus: recoilPhysicsRange (particle radiation)tau neutrino02 Physical SciencesLarge Hadron Colliderbeam lossInstrumentation and Detectors (physics.ins-det)p: beamNuclear & Particles Physicsvacuum systemparticle: interactionDark Matter detectors (WIMPbeam opticsNeutrino detectorp: beam dumpPhysics - Instrumentation and Detectorproposed experimentParticle Physics - Experimentzirconium: admixtureFOS: Physical sciencesAccelerator Physics and Instrumentationbeam: ejectionp: targetHidden SectorNuclear physicsKKKK: SHiP03 medical and health sciences0103 physical sciences[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Beam dumpnumerical calculationsmuon: shieldingdetector: designactivity reportDark Matter detectors (WIMPsScience & Technologyhep-ex010308 nuclear & particles physicsLarge detector systems for particle and astroparticle physicsbeam-dump facilityAcceleratorfysik och instrumenteringCERN SPSHidden sectoraxionaxions etc.)Large detector systems for particle and astroparticle physicmolybdenum: alloyPhysics::Accelerator Physicstarget: designtitanium: admixtureBeam (structure)neutrino detectors
researchProduct