0000000000175148

AUTHOR

Jennifer J. Wernegreen

showing 1 related works from this author

Gene expression levels influence amino acid usage and evolutionary rates in endosymbiotic bacteria

2005

International audience; Most endosymbiotic bacteria have extremely reduced genomes, accelerated evolutionary rates, and strong AT base compositional bias thought to reflect reduced efficacy of selection and increased mutational pressure. Here, we present a comparative study of evolutionary forces shaping five fully sequenced bacterial endosymbionts of insects. The results of this study were three-fold: (i) Stronger conservation of high expression genes at not just nonsynonymous, but also synonymous, sites. (ii) Variation in amino acid usage strongly correlates with GC content and expression level of genes. This pattern is largely explained by greater conservation of high expression genes, l…

0106 biological sciencesNonsynonymous substitutionInsectafood.ingredientBlochmanniaBiology010603 evolutionary biology01 natural sciencesGenomeEvolution Molecular03 medical and health sciencesfoodBacterial ProteinsBuchneraSpecies SpecificityGeneticsAnimalsAmino AcidsCodonSymbiosisWigglesworthiaGene030304 developmental biology2. Zero hungerGeneticschemistry.chemical_classification0303 health sciences[SDV.GEN]Life Sciences [q-bio]/GeneticsBacteriaGene Expression Regulation BacterialGeneral Medicinebiology.organism_classificationAT Rich SequenceGC Rich SequenceAmino acidINSECTEAmino Acid SubstitutionchemistryCodon usage biasMutationDatabases Nucleic AcidBuchneraGC-content
researchProduct