0000000000176494
AUTHOR
Vetro F.
On Problems Driven by the (p(·) , q(·)) -Laplace Operator
The aim of this paper is to prove the existence of at least one nontrivial weak solution for equations involving the (p(· ) , q(· ) ) -Laplace operator. The approach is variational and based on the critical point theory.
A singular (p,q)-equation with convection and a locally defined perturbation
We consider a parametric Dirichlet problem driven by the (p,q)-Laplacian and a reaction which is gradient dependent (convection) and the competing effects of two more terms, one a parametric singular term and a locally defined perturbation. We show that for all small values of the parameter the problem has a positive smooth solution.
Multiple solutions with sign information for a (p,2)-equation with combined nonlinearities
We consider a parametric nonlinear Dirichlet problem driven by the sum of a p-Laplacian and of a Laplacian (a (p,2)-equation) and with a reaction which has the competing effects of two distinct nonlinearities. A parametric term which is (p−1)-superlinear (convex term) and a perturbation which is (p−1)-sublinear (concave term). First we show that for all small values of the parameter the problem has at least five nontrivial smooth solutions, all with sign information. Then by strengthening the regularity of the two nonlinearities we produce two more nodal solutions, for a total of seven nontrivial smooth solutions all with sign informations. Our proofs use critical point theory, critical gro…
Least Energy Solutions with Sign Information for Parametric Double Phase Problems
We consider a parametric double phase Dirichlet problem. In the reaction there is a superlinear perturbation term which satisfies a weak Nehari-type monotonicity condition. Using the Nehari manifold method, we show that for all parameters below a critical value, the problem has at least three nontrivial solutions all with sign information. The critical parameter value is precisely identified in terms of the spectrum of the lower exponent part of the differential operator.
Positive and nodal solutions for nonlinear nonhomogeneous parametric neumann problems
We consider a parametric Neumann problem driven by a nonlinear nonhomogeneous differential operator plus an indefinite potential term. The reaction term is superlinear but does not satisfy the Ambrosetti-Rabinowitz condition. First we prove a bifurcation-type result describing in a precise way the dependence of the set of positive solutions on the parameter λ > 0. We also show the existence of a smallest positive solution. Similar results hold for the negative solutions and in this case we have a biggest negative solution. Finally using the extremal constant sign solutions we produce a smooth nodal solution.
Multiple solutions for semilinear Robin problems with superlinear reaction and no symmetries
We study a semilinear Robin problem driven by the Laplacian with a parametric superlinear reaction. Using variational tools from the critical point theory with truncation and comparison techniques, critical groups and flow invariance arguments, we show the existence of seven nontrivial smooth solutions, all with sign information and ordered.