0000000000177455
AUTHOR
M. Steck
Precision experiments with time-resolved Schottky mass spectrometry
Abstract A large area on the mass surface of neutron-deficient nuclides (36≤Z≤85) was measured with time-resolved Schottky mass spectrometry at the FRS-ESR facilities. The masses of 114 nuclides were obtained for the first time from which 43 were determined via known decay energies. The improved mass accuracy of 30 keV allowed to study the isospin dependence of nuclear pairing, to precisely locate the one-proton dripline for odd-Z isotopes from Tb to Pa and to make crucial tests of the predictive powers of modern mass models.
Laser spectroscopy of the ground-state hyperfine structure in H-like and Li-like bismuth
The LIBELLE experiment performed at the experimental storage ring (ESR) at the GSI Helmholtz Center in Darmstadt aims for the determination of the ground state hyperfine (HFS) transitions and lifetimes in hydrogen-like (209Bi82+) and lithium-like (209Bi80+) bismuth. The study of HFS transitions in highly charged ions enables precision tests of QED in extreme electric and magnetic fields otherwise not attainable in laboratory experiments. While the HFS transition in H-like bismuth was already observed in earlier experiments at the ESR, the LIBELLE experiment succeeded for the first time to measure the HFS transition in Li-like bismuth in a laser spectroscopy experiment.
Mass measurement of cooled neutron-deficient bismuth projectile fragments with time-resolved Schottky mass spectrometry at the FRS-ESR facility
Masses of 582 neutron-deficient nuclides ($30\leq{Z}\leq{85}$) were measured with time-resolved Schottky mass spectrometry at the FRS-ESR facility at GSI, 117 were used for calibration. The masses of 71 nuclides were obtained for the first time. A typical mass accuracy of 30 $\mu$u was achieved. These data have entered the latest atomic mass evaluation. The mass determination of about 140 additional nuclides was possible via known energies ($Q$-values) of $\alpha-$, $\beta-$, or proton decays. The obtained results are compared with the results of other measurements.
Hyperfine transition in209Bi80+—one step forward
The hyperfine transitions in lithium-like and hydrogen-like bismuth were remeasured by direct laser spectroscopy at the experimental storage ring. For this we have now employed a voltage divider which enabled us to monitor the electron cooler voltage in situ. This will improve the experimental accuracy by about one order of magnitude with respect to our previous measurement using the same technique.
The dynamics of bunched laser-cooled ion beams at relativistic energies
We discuss the axial dynamics of laser-cooled relativistic C3+ ion beams at moderate bunching voltages. Schottky noise spectra measured at a beam energy of 122 MeV/u are compared to simulations of the axial beam dynamics. Ions confined in the bucket are addressed by the narrow-band force of a laser beam counter-propagating to the ion beam, while the laser frequency is detuned relatively to the cooling transition frequency in the rest frame of the bucket. At large detuning comparable to the momentum acceptance of the bucket, the axial dynamics can be well explained by the secular motion of individual non-interacting ions. At small detuning, corresponding to a small axial momentum spread Δpax…
Observation of a dramatic hindrance of the nuclear decay of isomeric states for fully ionized atoms
Abstract The half-lives of isomeric states of fully ionized 144Tb, 149Dy and 151Er have been measured. These nuclides were produced via fragmentation of about 900 MeV/u 209Bi projectiles, separated in flight with the fragment separator (FRS) and stored in the cooler ring (ESR). The decay times of the cooled fragments have been measured with time-resolved Schottky spectrometry. We observed for the first time drastic increases of the half-lives of bare isomers by factors of up to 30 compared to their neutral counterparts. This is due to the exclusion of the strong internal conversion and electron-capture channels in the radioactive decay of these bare nuclei. The experimental results are in g…
First isochronous mass spectrometry at the experimental storage ring ESR
Short-lived exotic nuclei can be produced and separated with the high-energy secondary nuclear beam facility FRS at GSI. These nuclides can be injected and stored in the storage ring ESR. The lower lifetime limit of the presently existing methods for mass measurements on these nuclides at the ESR is about a few seconds. We have developed and investigated an isochronous operational mode of the ESR, that makes mass measurements of nuclides with lifetimes down to a few ls feasible. It has been commissioned in experiments using long-lived nuclides with known masses. A mass resolving power of about 150 000 has been achieved in a "rst pilot experiment. A suitable detector system has been implemen…
Optical measurement of the longitudinal ion distribution of bunched ion beams in the ESR
Abstract An optical technique to study the longitudinal distribution of ions in a bunched ion beam circulating in a storage ring is presented. It is based on the arrival-time analysis of photons emitted after collisional excitation of residual gas molecules. The beam-induced fluorescence was investigated in the ultraviolet regime with a channeltron and in the visible region using a photomultiplier tube. Both were applied to investigate the longitudinal shape of bunched and electron-cooled 209Bi80+ ion beams at about 400 MeV/u in the experimental storage ring (ESR) at GSI Helmholtzzentrum fur Schwerionenforschung in Darmstadt, Germany. Bunch lengths were determined with an uncertainty of abo…
The electronion scattering experiment ELISe at the International Facility for Antiproton and Ion Research (FAIR) - A conceptual design study
The electronion scattering experiment ELISe is part of the installations envisaged at the new experimental storage ring at the International Facility for Antiproton and Ion Research (FAIR) in Darmstadt, Germany. It offers an unique opportunity to use electrons as probe in investigations of the structure of exotic nuclei. The conceptual design and the scientific challenges of ELISe are presented. © 2011 Elsevier B.V. All rights reserved.
Simultaneous Measurement ofβ−Decay to Bound and Continuum Electron States
We report the first measurement of a ratio {lambda}{sub {beta}{sub b}}/{lambda}{sub {beta}{sub c}} of bound-state ({lambda}{sub {beta}{sub b}}) and continuum-state ({lambda}{sub {beta}{sub c}}) {beta}{sup -}-decay rates for the case of bare {sup 207}Tl{sup 81+} ions. These ions were produced at the GSI fragment separator FRS by projectile fragmentation of a {sup 208}Pb beam. After in-flight separation with the B{rho}-{delta}E-B{rho} method, they were injected into the experimental storage-ring ESR at an energy of 400.5A MeV, stored, and electron cooled. The number of both the {sup 207}Tl{sup 81+} ions and their bound-state {beta}{sup -}-decay daughters, hydrogenlike {sup 207}Pb{sup 81+} ion…
First feasibility study for EXL prototype detectors at the ESR and detector simulations
This contribution presents some results from the first feasibility measurement performed at GSI using a 350 MeV/nucleon 136 Xe beam and a Hydrogen gas-jet target. In this feasibility study, one element of every possible detection part of the future EXL detection system was investigated. In addition, simulation results for EXL setup will be presented.
New results with stored exotic nuclei at relativistic energies
Recently, much progress has been made with stored exotic nuclei at relativistic velocities ( v c = 0.7 ) . Fragments of 208Pb and 209Bi projectiles and fission products from 238U ions were produced, separated in flight with the fragment separator FRS, and injected into the storage-cooler ring ESR for precision measurements. 114 new masses of neutron-deficient isotopes in the lead region have been measured with time-resolved Schottky Mass Spectrometry (SMS). A new isospin dependence of the pairing energy was observed due to the improved mass accuracy of typically 1.5×10-7 (30 keV). New masses of short-lived neutron-rich fission fragments have been obtained with Isochronous Mass Spectrometry …
Study of Basic Nuclear Properties of Highly-Charged, Unstable Nuclei at the SIS-FRS-ESR Complex
Recent progress in experiments with exotic nuclear beams at the SIS-FRS-ESR facility is summarized. New results on gross properties of exotic nuclei like binding energy, half-lives, and decay modes are presented. A brief outlook to future experiments is given.
Laser cooling of relativistic heavy-ion beams for FAIR
Laser cooling is a powerful technique to reduce the longitudinal momentum spread of stored relativistic ion beams. Based on successful experiments at the experimental storage ring at GSI in Darmstadt, of which we show some important results in this paper, we present our plans for laser cooling of relativistic ion beams in the future heavy-ion synchrotron SIS100 at the Facility for Antiproton and Ion Research in Darmstadt.
First laser cooling of relativistic ions in a storage ring
The first successful laser cooling of ions at relativistic energies was observed at the Heidelberg TSR storage ring. A $^{7}\mathrm{Li}^{+}$-ion beam of 13.3 MeV was oberlapped with resonant copropagating and counterpropagating laser beams. The metastable ions were cooled from 260 K to a longitudinal temperature of below 3 K and decelerated by several keV. The longitudinal velocity distribution was determined by a fluorescence method. After laser cooling a strongly enhanced narrow peak appeared in the Schottky noise spectrum in addition to the uncooled ion distribution.
Experiments with stored exotic nuclei at relativistic energies
Abstract A review and recent progress are presented from experiments on masses and lifetimes of bare and few-electron exotic nuclei at GSI. Relativistic rare isotopes produced via projectile fragmentation and fission were separated in flight by the fragment separator FRS and injected into the storage ring ESR. This worldwide unique experimental method gives access to all fragments with half-lives down to the microsecond range. The great research potential is demonstrated by the discovery of new isotopes along with simultaneous mass and lifetime measurements. Single particle decay measurements and the continuous recording of both stored mother and daughter nuclei open up a new era for nuclea…
First experiments with the heidelberg test storage ring TSR
Abstract The Heidelberg heavy ion test storage ring TSR started operation in May 1988. The lifetimes of the ion beams observed in the first experiments can be explained by interactions with the residual gas. Multiple Coulomb scattering, single Coulomb scattering, electron capture and electron stripping are the relevant processes. Electron cooling of ions as heavy as O 8+ has been observed for the first time. With increasing particle number, the longitudinal Schottky noise spectrum becomes dominated by collective waves for cooled beams, allowing a determination of velocities of sound. After correcting for these coherent distortions fo the Schottky spectrum, the longitudinal beam temperature …
Schottky mass measurements of stored and cooled neutron-deficient projectile fragments in the element range of 57≤Z≤84
Abstract A novel method for direct, high precision mass measurements of relativistic exotic nuclei has been successfully applied in the storage ring ESR at GSI. The nuclei of interest were produced by projectile fragmentation of 930 MeV / u bismuth ions, separated in-flight by the fragment separator FRS, stored and cooled in the ESR. The mass values have been deduced from the revolution frequencies of the coasting cooled ions. We have measured 104 new mass values with a precision of about 100 keV and a resolving power of 3.5×10 5 for the neutron-deficient isotopes of the elements 57≤Z≤84 . This paper presents the experimental method, the mass evaluation and a table of the experimental mass …