0000000000177775

AUTHOR

D. Mcnulty

Accurate Determination of the Neutron Skin Thickness of Pb208 through Parity-Violation in Electron Scattering

We report a precision measurement of the parity-violating asymmetry A_{PV} in the elastic scattering of longitudinally polarized electrons from ^{208}Pb. We measure A_{PV}=550±16(stat)±8(syst) parts per billion, leading to an extraction of the neutral weak form factor F_{W}(Q^{2}=0.00616  GeV^{2})=0.368±0.013. Combined with our previous measurement, the extracted neutron skin thickness is R_{n}-R_{p}=0.283±0.071  fm. The result also yields the first significant direct measurement of the interior weak density of ^{208}Pb: ρ_{W}^{0}=-0.0796±0.0036(exp)±0.0013(theo)  fm^{-3} leading to the interior baryon density ρ_{b}^{0}=0.1480±0.0036(exp)±0.0013(theo)  fm^{-3}. The measurement accurately co…

research product

New Measurements of the Transverse Beam Asymmetry for Elastic Electron Scattering from Selected Nuclei

We have measured the beam-normal single-spin asymmetry $A_n$ in the elastic scattering of 1-3 GeV transversely polarized electrons from $^1$H and for the first time from $^4$He, $^{12}$C, and $^{208}$Pb. For $^1$H, $^4$He and $^{12}$C, the measurements are in agreement with calculations that relate $A_n$ to the imaginary part of the two-photon exchange amplitude including inelastic intermediate states. Surprisingly, the $^{208}$Pb result is significantly smaller than the corresponding prediction using the same formalism. These results suggest that a systematic set of new $A_n$ measurements might emerge as a new and sensitive probe of the structure of heavy nuclei.

research product

Study of light backgrounds from relativistic electrons in air light-guides

The MOLLER experiment proposed at the Thomas Jefferson National Accelerator Facility plans a precision low energy determination of the weak mixing angle via the measurement of the parity-violating asymmetry in the scattering of high energy longitudinally polarized electrons from electrons bound in a liquid hydrogen target (M{\o}ller scattering). A relative measure of the scattering rate is planned to be obtained by intercepting the M{\o}ller scattered electrons with a circular array of thin fused silica tiles attached to air light guides, which facilitate the transport of Cherenkov photons generated within the tiles to photomultiplier tubes (PMTs). The scattered flux will also pass through …

research product