0000000000177815

AUTHOR

Tim E. Johnson

Thermobarometric constraints on pressure variations across the Plattengneiss shear zone of the Eastern Alps: implications for exhumation models during Eoalpine subduction

Forward and inverse mineral equilibria modelling of metapelitic rocks in the hangingwall and footwall of the Plattengneiss, a major shear zone in the Eastern Alps, is used to constrain their tectonometamorphic evolution and assess models for their exhumation. Forward (pseudosection) modelling of two metapelitic rocks suggests a steep clockwise P–T path with a near-isothermal decompression segment from a pressure peak at ~18–19 kbar and 670 °C to the metamorphic peak at 680–720 °C and 11–13 kbar. A subsequent decrease to 600–645 °C and 8–9 kbar is inferred from the late growth of staurolite in some samples. Conventional thermobarometric calculations (inverse modelling) on 18 samples with the…

research product

Petrogenetic modelling of strongly residual metapelitic xenoliths within the southern Platreef, Bushveld Complex, South Africa

Xenoliths of quartz-absent Fe-rich aluminous metapelite are common within the platinum group element-rich mafic ⁄ ultramafic magmatic rocks of the Platreef. Relative to well-characterized protoliths, the xenoliths are strongly depleted in K2O and H2O, and have lost a substantial amount of melt (>50 vol.%). Mineral equilibria calculations in the NCKFMASHTO system yield results that are consistent with observations in natural samples. Lower-grade rocks that lack staurolite constrain peak pressures to � 2.5 kbar in the southern Platreef. Smaller xenoliths and the margins of larger xenoliths comprise micro-diatexite rich in coarse acicular corundum and spinel, which record evidence for the meta…

research product

Phase equilibrium constraints on a deep crustal metamorphic field gradient: metapelitic rocks from the Ivrea Zone (NW Italy)

The metamorphic rocks of the Ivrea Zone in NW Italy preserve a deep crustal metamorphic field gradient. Application of quantitative phase equilibria methods to metapelitic rocks provides new constraints on the P–T conditions recorded in Val Strona di Omegna, Val Sesia and Val Strona di Postua. In Val Strona di Omegna, the metapelitic rocks show a structural and mineralogical change from mica‐schists with the common assemblage bi–mu–sill–pl–q–ilm ± liq at the lowest grades, through metatexitic migmatites (g–sill–bi–ksp–pl–q–ilm–liq) at intermediate grades, to complex diatexitic migmatites (g–sill–ru–bi–ksp–pl–q–ilm–liq) at the highest grades. Partial melting in the metapelitic rocks is consi…

research product

Migmatites in the Ivrea Zone (NW Italy): Constraints on partial melting and melt loss in metasedimentary rocks from Val Strona di Omegna

Abstract The mid to lower crustal metamorphic field gradient through amphibolite and granulite facies rocks in the Ivrea Zone offers the potential to study partial melting and melt loss in the crust. Metapelitic rocks in Val Strona di Omegna show a progressive evolution in migmatite structures from metatexites with rare isolated leucosome veins in the amphibolite facies rocks to stromatic migmatites and diatexites in granulite facies rocks. Little field or petrographic evidence for melting can be seen on crossing the position of the modelled wet solidus, consistent with the small amounts of melt predicted to occur by H2O-saturated melting. The first field evidence for partial melting, in th…

research product

Field and petrographic evidence for partial melting of TTG gneisses from the central region of the mainland Lewisian complex, NW Scotland

The central region of the mainland Lewisian complex is dominated by granulite-facies tonalite–trondhjemite–granodiorite (TTG) gneisses that are highly depleted in some mobile trace elements (Cs, Rb, Th and U) relative to amphibolite-facies TTG gneisses elsewhere in the Lewisian complex and to the average composition of TTG gneisses worldwide. Over almost half a century of research there has been vigorous debate as to the origin of this depletion, in particular with respect to the role of partial melting and melt loss. Here we provide field and petrographic evidence that TTG gneisses across the central region partially melted during granulite-facies (Badcallian) metamorphism. Partial melting…

research product

Polymetamorphism in the mainland Lewisian complex, NW Scotland - phase equilibria and geochronological constraints from the Cnoc an t’Sidhean suite

The metamorphic evolution of rocks cropping out near Stoer, within the Assynt terrane of the central region of the mainland Lewisian complex of NW Scotland, is investigated using phase equilibria modelling in the NCKFMASHTO and MnNCKFMASHTO model systems. The focus is on the Cnoc an t’Sidhean suite, garnet-bearing biotite-rich rocks (brown gneiss) with rare layers of white mica gneiss, which have been interpreted as sedimentary in origin. The results show that these rocks are polymetamorphic and experienced granulite facies peak metamorphism (Badcallian) followed by retrograde fluid-driven metamorphism (Inverian) under amphibolite facies conditions. The brown gneisses are inferred to have c…

research product

Partial melting of metagreywacke: a calculated mineral equilibria study

Greywacke occurs in most regionally metamorphosed orogenic terranes, with depositional ages from Archean to recent. It is commonly the dominant siliciclastic rock type, many times more abundant than pelite. Using calculated pseudosections in the Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–O system, the partial melting of metagreywacke is investigated using several natural protolith compositions that reflect the main observed compositional variations. At conditions appropriate for regional metamorphism at mid-crustal depths (6–8 kbar), high-T subsolidus assemblages are dominated by quartz, plagioclase and biotite with minor garnet, orthoamphibole, sillimanite, muscovite and/or K-feldspar (±Fe–T…

research product

Partial melting of metabasic rocks in Val Strona di Omegna, Ivrea Zone, northern Italy

Field and petrographic observations combined with major and trace element bulk rock geochemistry show that metabasic rocks within Val Strona di Omegna in the central Ivrea Zone partially melted during granulite facies regional metamorphism. A transition from granoblastic amphibolite facies metabasic rocks at the lowest metamorphic grades to metatexitic and diatexitic migmatites in the granulite facies records the effects of in situ fluid-absent partial melting. Coarse-grained euhedral clinopyroxene porphyroblasts within leucosomes are consistent with anatexis via incongruent fluid-absent melting reactions consuming hornblende, plagioclase and quartz to form clinopyroxene and melt. Field obs…

research product

Subduction or sagduction? Ambiguity in constraining the origin of ultramafic–mafic bodies in the Archean crust of NW Scotland

Abstract The Lewisian Complex of NW Scotland is a fragment of the North Atlantic Craton. It comprises mostly Archean tonalite–trondhjemite–granodiorite (TTG) orthogneisses that were variably metamorphosed and reworked in the late Neoarchean to Paleoproterozoic. Within the granulite facies central region of the mainland Lewisian Complex, discontinuous belts composed of ultramafic–mafic rocks and structurally overlying garnet–biotite gneiss (brown gneiss) are spatially associated with steeply-inclined amphibolite facies shear zones that have been interpreted as terrane boundaries. Interpretation of the primary chemical composition of these rocks is complicated by partial melting and melt loss…

research product

Phase equilibrium constraints on conditions of granulite-facies metamorphism at Scourie, NW Scotland

Abstract: The metamorphic evolution of a metapyroxenite and metagabbro from Scourie, NW Scotland, is investigated using phase equilibria modelled in the NCFMASHTO (Na 2 O–CaO–FeO–MgO–Al 2 O 3 –SiO 2 –H 2 O–TiO 2 –O) system. The calculated stability fields for the observed assemblages in each rock overlap and imply conditions of 8.5–11.5 kbar and 875–975 °C for the peak of granulite-facies (Badcallian) metamorphism. The lack of any evidence for the former presence of garnet in the metapyroxenite suggests that the rocks cannot have reached pressures much in excess of those recorded at the metamorphic peak. The growth of coronas of plagioclase, orthopyroxene and magnetite replacing garnet in t…

research product

A year in the life of an aluminous metapelite xenolith—The role of heating rates, reaction overstep, H2O retention and melt loss

Abstract Xenoliths of aluminous metapelite within the Platreef magmatic rocks of the Bushveld Complex, South Africa, are mineralogically and texturally zoned, with coarse-grained margins rich in acicular corundum, spinel and feldspar and cores rich in finer-grained aluminosilicate and cordierite. Xenoliths exhibiting remarkably similar features occur within other intrusions, suggesting a common origin. Using a single 3 m wide xenolith as a case study, a model is proposed to explain their petrogenesis. Mineral equilibria calculations in the NCKFMASHTO system show that the thermal stability of the solid phases, in particular corundum, is highly sensitive to the quantity of H 2 O retained in t…

research product

New constraints on granulite facies metamorphism and melt production in the Lewisian Complex, northwest Scotland

The research carried out for this study was part of YF's Master Thesis at the Institute of Geoscience, Johannes Gutenberg University, Mainz, which provided the funding for fieldwork and laboratory analyses. TJ acknowledges support from Open Fund GPMR210704 from the State Key Lab for Geological Processes and Mineral Resources, China University of Geosciences, Wuhan. In this study we investigate the metamorphic history of the Assynt and Gruinard blocks of the Archaean Lewisian Complex, northwest Scotland, which are considered by some to represent discrete crustal terranes. For samples of mafic and intermediate rocks, phase diagrams were constructed in the Na2O-CaO‐K2O‐FeO‐MgO‐Al2O3-SiO2-H2O-T…

research product

The effect of Mn on mineral stability in metapelites revisited: new a -x relations for manganese-bearing minerals

The a-x relations recently presented in White et al. (, Journal of Metamorphic Geology, 32, 261-286) are extended to include MnO. This provides a set of internally consistent a-x relations for metapelitic rocks in the MnO-Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-O2 (MnNCKFMASHTO) system. The mixing parameters for the Mn-bearing minerals were estimated using the micro-ϕ{symbol} approach of Powell et al. (, Journal of Metamorphic Geology, 32, 245-260). Then the Mn-end-member thermodynamic properties were calibrated using a database of co-existing minerals involving literature data from rocks and from experiments on natural materials. Mn-end-members were calibrated for orthopyroxene, cordierit…

research product

Archaean Intracrustal Differentiation from Partial Melting of Metagabbro--Field and Geochemical Evidence from the Central Region of the Lewisian Complex, NW Scotland

The central region of the mainland Lewisian gneiss complex of NW Scotland is a granulite-facies migmatite terrane. With the exception of ultramafic and rare calc-silicate rocks, all other lithologies partially melted during Neoarchaean, ultrahigh-temperature (Badcallian) metamorphism. The clearest evidence is preserved within large layered mafic^ultramafic bodies that exhibit macroscopic features diagnostic of anatexis. In situ partial melting of metagabbroic rocks produced patches and sheets of coarse-grained plagioclase-rich leucosome containing euhedral peritectic clinopyroxene.These leucosomes connect with larger, laterally continuous tonalite or trondhjemite sheets that record segregat…

research product

Delamination and recycling of Archaean crust caused by gravitational instabilities

The volume of Archaean crust preserved at Earth’s surface today is low. Thermodynamic calculations and geodynamic modelling show that the thick, primary crust that would have formed on a much hotter Archaean Earth was denser than the underlying mantle, and would have therefore been recycled back into the mantle as drips.

research product

Is the Crucible Reproducible? Reconciling Melting Experiments with Thermodynamic Calculations

Experimental studies and thermodynamic modelling have advanced our understanding of partial melting in the crust and have provided a frame-work for the interpretation of migmatites, residual granulites and granites. Each approach has advantages and pitfalls, and each is more appropriate than the other for investigating particular aspects of the melting process. A comparison of these two approaches may be useful because, together, they potentially give more information. A comparison of a small number of experiments with model calculations using equivalent bulk compositions shows important consistencies between the results, especially regarding the overall topologies of key melting equilibria…

research product

New mineral activity-composition relations for thermodynamic calculations in metapelitic systems

New activity–composition (a–x) relations for minerals commonly occurring in metapelites are presented for use with the internally consistent thermodynamic dataset of Holland & Powell (2011, Journal of Metamorphic Geology, 29, 333–383). The a–x relations include a broader consideration of Fe2O3 in minerals, changes to the formalism of several phases and order–disorder in all ferromagnesian minerals where Fe–Mg mixing occurs on multiple sites. The a–x relations for chlorite, biotite, garnet, chloritoid, staurolite, cordierite, orthopyroxene, muscovite, paragonite and margarite have been substantially reparameterized using the approach outlined in the companion paper in this issue. For the fir…

research product