0000000000177877

AUTHOR

Peter Dauscher

showing 6 related works from this author

Evolution and Learning: Evolving Sensors in a Simple MDP Environment

2003

Natural intelligence and autonomous agents face difficulties when acting in information-dense environments. Assailed by a multitude of stimuli they have to make sense of the inflow of information, filtering and processing what is necessary, but discarding that which is unimportant. This paper aims at investigating the interactions between evolution of the sensorial channel extracting the information from the environment and the simultaneous individual adaptation of agent-control. Our particular goal is to study the influence of learning on the evolution of sensors, with learning duration being the tunable parameter. A genetic algorithm governs the evolution of sensors appropriate for the a…

Learning classifier systembusiness.industryComputer science05 social sciencesAutonomous agentExperimental and Cognitive PsychologyGrid050105 experimental psychologyTask (project management)03 medical and health sciencesBehavioral Neuroscience0302 clinical medicineGenetic algorithmReinforcement learning0501 psychology and cognitive sciencesArtificial intelligencebusinessAdaptation (computer science)030217 neurology & neurosurgeryCommunication channelAdaptive Behavior
researchProduct

Analysis of motor control and behavior in multi agent systems by means of artificial neural networks

2004

Abstract This article gives a short introduction to Self-Organizing Maps, a particular form of Artificial Neural Networks and shows by some examples, how these approaches can be used in order to analyze and visualize time series data originating from complex systems. The methods shown in this article have originally been developed for the analysis of RoboCup robot soccer games, a special kind of so-called Multi Agent Systems. Although this application has no direct connection to biomechanics, the examples shown here may give an impression of the abilities of Neural Networks in the field of Time Series Analysis in general. Because of the abstractness of the methods, it appears to be very lik…

Self-organizing mapEngineeringMovementModels NeurologicalBiophysicsComplex systemContext (language use)Motor ActivityMachine learningcomputer.software_genreField (computer science)AnimalsHumansComputer SimulationOrthopedics and Sports MedicineDiagnosis Computer-AssistedArtificial neural networkbusiness.industryTime delay neural networkMulti-agent systemRoboticsRobotNeural Networks ComputerArtificial intelligencebusinesscomputerAlgorithmsClinical Biomechanics
researchProduct

Self-organized modularization in evolutionary algorithms.

2005

The principle of modularization has proven to be extremely successful in the field of technical applications and particularly for Software Engineering purposes. The question to be answered within the present article is whether mechanisms can also be identified within the framework of Evolutionary Computation that cause a modularization of solutions. We will concentrate on processes, where modularization results only from the typical evolutionary operators, i.e. selection and variation by recombination and mutation (and not, e.g., from special modularization operators). This is what we call Self-Organized Modularization. Based on a combination of two formalizations by Radcliffe and Altenber…

Modularity (networks)education.field_of_studyTheoretical computer scienceComputer sciencebusiness.industryPopulationEvolutionary algorithmVariation (game tree)Modular designModels TheoreticalBiological EvolutionEvolutionary computationField (computer science)Computational MathematicsRange (mathematics)MutationArtificial intelligencebusinesseducationAlgorithmsEvolutionary computation
researchProduct

On a Quantitative Measure for Modularity Based on Information Theory

2005

The concept of modularity appears to be crucial for many questions in the field of Artificial Life research. However, there have not been many quantitative measures for modularity that are both general and viable. In this paper we introduce a measure for modularity based on information theory. Due to the generality of the information theory formalism, this measure can be applied to various problems and models; some connections to other formalisms are presented.

Modular decompositionQuantitative measureGeneralitybusiness.industryComputer scienceArtificial lifeArtificial intelligenceMutual informationbusinessInformation theoryMeasure (mathematics)Modularity
researchProduct

Dynamic Pattern Recognition in Sport by Means of Artificial Neural Networks

2008

Behavioural processes like those in sports, motor activities or rehabilitation are often the object of optimization methods. Such processes are often characterized by a complex structure. Measurements considering them may produce a huge amount of data. It is an interesting challenge not only to store these data, but also to transform them into useful information. Artificial Neural Networks turn out to be an appropriate tool to transform abstract numbers into informative patterns that help to understand complex behavioural phenomena. The contribution presents some basic ideas of neural network approaches and several examples of application. The aim is to give an impression of how neural meth…

Physical neural networkArtificial Intelligence Systembusiness.industryTime delay neural networkComputer scienceDeep learningNeocognitronMachine learningcomputer.software_genreCellular neural networkArtificial intelligenceTypes of artificial neural networksbusinesscomputerNervous system network models
researchProduct

Some Effects of Individual Learning on the Evolution of Sensors

2001

In this paper, we present an abstract model of sensor evolution, where sensor development is only determined by artificial evolution and the adaptation of agent reactions is accomplished by individual learning. With the environment cast into a MDP framework, sensors can be conceived as a map from environmental states to agent observations and Reinforcement Learning algorithms can be utilised. On the basis of a simple gridworld scenario, we present some results of the interaction between individual learning and evolution of sensors.

Basis (linear algebra)business.industryComputer scienceIndividual learningEvolutionary algorithmReinforcement learningMarkov decision processArtificial intelligencebusinessAdaptation (computer science)
researchProduct