0000000000177932

AUTHOR

Rudolf Hey

Acousto-electric single-photon detector

We propose a novel concept for a semiconductor-based single-photon detector for quantum information processing, which is capable of discriminating the number of photons in a light pulse. The detector exploits the charge transport by a surface acoustic wave (SAW) in order to combine a large photon absorption area (thus providing high photon collection efficiency) with a microscopic charge detection area, where the photo generated charge is detected with resolution at the single electron level using single electron transistors (SETs). We present preliminary results on acoustic transport measured in a prototype for the detector as well as on the fabrication of radio-frequency single-electron t…

research product

Compact Mach-Zehnder acousto-optic modulator

The authors demonstrate a compact optical waveguide modulator based on a Mach-Zehnder interferometer driven by surface acoustic waves. The modulator was monolithically fabricated on GaAs with an active region length of approximately 15μm. It yields peak-to-peak modulation exceeding 90% of the average transmission and operation in the gigahertz frequency range.

research product

Acoustically tunable photonic band gap structures

We discuss the formation of a tunable one-dimensional photonic band gap structure through the modulation of the resonance frequency of an optical microcavity by a surface acoustic wave (SAW). The microcavity consists of a λ/2 GaAs layer bounded by AlAs/GaAs Bragg mirrors. The SAW periodically modulates the optical thickness of the cavity layer, leading to a light dispersion relation folded within a mini-Brillouin zone (MBZ) defined by |k x |≤ π/λ SAW (k x denotes the photon wave vector component along the SAW propagation direction x-with-caret). In reflection and diffraction experiments, we observe photon modes bounding the gaps in the center and at the boundary of the MBZ as well as a reno…

research product

Dynamic carrier distribution in quantum wells modulated by surface acoustic waves

We have investigated the dynamics of photogenerated carriers under surface acoustic wave (SAW) fields in GaAs quantum wells using spatially and time-resolved photoluminescence (PL). The frequency and phase of the PL oscillations under a SAW yield information about the carrier distribution and the band-gap modulation induced by the SAW. We directly prove that the transport properties of the carriers ultimately control their distribution, storage and, subsequent recombination in the modulated potential.

research product

Active photonic crystals based on surface acoustic waves

An active photonic crystal (PC) based on the modulation of a one-dimensional cavity resonator by electrically-generated surface acoustic waves is described. The high nonthermal population of surface modes combined with the enhanced Brillouin scattering in the cavity increases the intensity of the scattered light to values comparable to the excitation intensity. This process is employed to switch and modulate light beams in PCs.

research product

Synchronized photonic modulators driven by surface acoustic waves

Photonic modulators are one of the most important elements of integrated photonics. We have designed, fabricated, and characterized a tunable photonic modulator consisting of two 180 degrees-dephased output waveguide channels, driven by a surface acoustic wave in the GHz frequency range built on (Al,Ga)As. Odd multiples of the fundamental driven frequency are enabled by adjusting the applied acoustic power. A good agreement between theory and experimental results is achieved. The device can be used as a building block for more complex integrated functionalities and can be implemented in several material platforms. (C) 2013 Optical Society of America

research product

Acoustic manipulation of electron-hole pairs in GaAs at room temperature

We demonstrate the optically detected long-range (>100 μm) ambipolar transport of photogenerated electrons and holes at room temperature by surface acoustic waves (SAWs) in (In,Ga)As-based quantum well structures coupled to an optical microcavity. We also show the control of the propagation direction of the carriers by a switch composed of orthogonal SAW beams, which can be used as a basic control gate for information processing based on ambipolar transport.

research product

Acousto-optical multiple interference switches

The authors introduce an alternative approach for acousto-optical light control based on the interference of light propagating through several waveguides, each subjected to a periodic refractive index modulation induced by a surface acoustic wave. The feasibility of the concept is demonstrated by the realization of an optical switch for arbitrary time intervals with an on/off contrast ratio of 20.

research product

Phonon-induced optical superlattice

We demonstrate the formation of a dynamic optical superlattice through the modulation of a semiconductor microcavity by stimulated acoustic phonons. The high coherent phonon population produces a folded optical dispersion relation with well-defined energy gaps and renormalized energy levels, which are accessed using reflection and diffraction experiments.

research product

Acoustic phonons for coherent photon control in semiconductor structures

We present a novel concept for acousto-optical modulation in waveguide (WG) structures using coherent phonons in the form of surface acoustic waves (SAWs). Here, a SAW impinging perpendicular to a waveguide structure induces a change in phase of the light propagating through it, which is translated into a transmission intensity modulation by using the WG as an arm of a Mach-Zehnder interferometer (MZI). We show that the modulation becomes strongly enhanced if the SAW induces phase changes of opposite sign in the MZI arms. Very compact modulators with an interaction length between the optical and acoustic waves of approx. 15 µm have been fabricated using focusing acoustic transducers to gene…

research product

Microscopic carrier dynamics in quantum wells modulated by high-frequency lateral fields

Abstract We have investigated the dynamics of photogenerated carriers in GaAs quantum wells under the influence of high-frequency fields produced by metal gratings and by surface acoustic waves (SAW's) using spatially and time-resolved photoluminescence (PL). The frequency and phase of the PL oscillations induced by the high-frequency field yield information about the spatial distribution of the carriers and, in the case of SAW's, about the band-gap modulation induced by the SAW strain.

research product

Acoustically tunable photonic structures based on microcavity polaritons

Abstract The interaction between surface acoustic waves (SAWs) with (Al,Ga)As microcavity polaritons results in the formation of a dynamic optical superlattice with folded light dispersion and energy stop bands when the lower polariton branch is predominantly of photonic character. For small detunings between the excitonic and optical cavity resonances, the SAW bleaches the polariton resonances through the efficient dissociation of the excitons by its piezoelectric field.

research product