0000000000178023
AUTHOR
C. Cavata
Virtual Compton scattering and the generalized polarizabilities of the proton atQ2=0.92and 1.76 GeV2
Virtual Compton Scattering (VCS) on the proton has been studied at Jefferson Lab using the exclusive photon electroproduction reaction (e p --> e p gamma). This paper gives a detailed account of the analysis which has led to the determination of the structure functions P{sub LL}-P{sub TT}/epsilon and P{sub LT}, and the electric and magnetic generalized polarizabilities (GPs) alpha{sub E}(Q{sup 2}) and beta{sub M}(Q{sup 2}) at values of the four-momentum transfer squared Q{sup 2} = 0.92 and 1.76 GeV{sup 2}. These data, together with the results of VCS experiments at lower momenta, help building a coherent picture of the electric and magnetic GPs of the proton over the full measured Q{sup 2}-…
Evidence for Muon Neutrino Oscillation in an Accelerator-Based Experiment
We present results for muon neutrino oscillation in the KEK to Kamioka (K2K) long-baseline neutrino oscillation experiment. K2K uses an accelerator-produced muon neutrino beam with a mean energy of 1.3 GeV directed at the Super-Kamiokande detector. We observed the energy dependent disappearance of muon neutrino, which we presume have oscillated to tau neutrino. The probability that we would observe these results if there is no neutrino oscillation is 0.0050% (4.0 sigma).
A line-shape analysis for spin-1 NMR signals
An analytic model of the deuteron absorption function has been developed and is compared to experimental NMR signals of deuterated butanol obtained at the SMC experiment in order to determine the deuteron polarization. The absorption function model includes dipolar broadening and a frequency-dependent treatment of the intensity factors. The high-precision TE signal data available are used to adjust the model for Q-meter distortions and dispersion effects. Once the Q-meter adjustment is made, the enhanced polarizations determined by the asymmetry and TE-calibration methods compare well within the accuracy of each method. In analyzing the NMR signals, the quadrupolar coupling constants could …
Measurement of neutrino oscillation by the K2K experiment
We present measurements of nu_mu disappearance in K2K, the KEK to Kamioka long-baseline neutrino oscillation experiment. One hundred and twelve beam-originated neutrino events are observed in the fiducial volume of Super-Kamiokande with an expectation of 158.1^{+9.2}_{-8.6} events without oscillation. A distortion of the energy spectrum is also seen in 58 single-ring muon-like events with reconstructed energies. The probability that the observations are explained by the expectation for no neutrino oscillation is 0.0015% (4.3sigma). In a two flavor oscillation scenario, the allowed Delta m^2 region at sin^2(2theta) is between 1.9 and 3.5 x 10^{-3} eV^2 at the 90% C.L. with a best-fit value o…
Spin asymmetriesA1and structure functionsg1of the proton and the deuteron from polarized high energy muon scattering
We present the final results of the spin asymmetries A1 and the spin structure functions g1 of the proton and the deuteron in the kinematic range 0.0008<x<0.7 and 0.2<Q2<100 GeV2. For the determination of A1, in addition to the usual method which employs inclusive scattering events and includes a large radiative background at low x, we use a new method which minimizes the radiative background by selecting events with at least one hadron as well as a muon in the final state. We find that this hadron method gives smaller errors for x<0.02, so it is combined with the usual method to provide the optimal set of results.
Backward electroproduction ofπ0mesons on protons in the region of nucleon resonances at four momentum transfer squaredQ2=1.0GeV2
Exclusive electroproduction of pi{sup 0} mesons on protons in the backward hemisphere has been studied at Q2 = 1.0 GeV2 by detecting protons in the forward direction in coincidence with scattered electrons from the 4 GeV electron beam in Jefferson Lab's Hall A. The data span the range of the total (gamma*p) center-of-mass energy W from the pion production threshold to W = 2.0 GeV. The differential cross sections sigma{sub T} + epsilon sigma{sub L}, sigma{sub TL}, and sigma{sub TT} were separated from the azimuthal distribution and are presented together with the MAID and SAID parameterizations.
A large Streamer Chamber muon tracking detector in a high-flux fixed-target application.
Arrays of limited streamer tubes of the Iarocci type were deployed in our experiment at CERN as part of a forward muon detector system with provisions for the beam to pass through the center of each panel in the array. A total of 16 4 m x 4 m panels were assembled with inductive readout strips on both sides of each panel. An active feedback system. was deployed to regulate the high voltage to the streamer tubes to insure a constant efficiency for minimum ionizing particles. The arrays were operated in this environment for over five years of data taking. Streamer tube track-reconstruction efficiencies and tube replacement rates are reported. (C) 1999 Elsevier Science B.V. All rights reserved.
Virtual Compton Scattering and Neutral Pion Electroproduction in the Resonance Region up to the Deep Inelastic Region at Backward Angles
We have made the first measurements of the virtual Compton scattering (VCS) process via the H$(e,e'p)\gamma$ exclusive reaction in the nucleon resonance region, at backward angles. Results are presented for the $W$-dependence at fixed $Q^2=1$ GeV$^2$, and for the $Q^2$-dependence at fixed $W$ near 1.5 GeV. The VCS data show resonant structures in the first and second resonance regions. The observed $Q^2$-dependence is smooth. The measured ratio of H$(e,e'p)\gamma$ to H$(e,e'p)\pi^0$ cross sections emphasizes the different sensitivity of these two reactions to the various nucleon resonances. Finally, when compared to Real Compton Scattering (RCS) at high energy and large angles, our VCS data…
A new measurement of the spin-dependent structure function $g_{1}(x)$ of the deuteron
Abstract We present a new measurement of the spin-dependent structure function g 1 d of the deuteron in deep inelastic scattering of 190 GeV polarised muons on polarised deuterons, in the kinematic range 0.003 x 2 Q 2 2 . This structure function is found to be negative at small x . The first moment Γ 1 d =∫ 0 1 g 1 d d x evaluated at Q 0 2 = 10 GeV 2 is 0.034 ± 0.009 (stat.) ± 0.006 (syst.). This value is below the Ellis-Jaffe sum rule prediction by three standard deviations. Using our earlier determination of Γ 1 p , we obtain Γ 1 p − Γ 1 n = 0.199 ± 0.038 which agrees with the Bjorken sum rule.
The polarized double cell target of the SMC
The polarized target of the Spin Muon Collaboration at CERN was used for deep inelastic muon scattering experiments during 1993-1996 with a polarized muon beam to investigate the spin structure of the nucleon. Most of the experiments were carried out with longitudinal target polarization and 190 GeV muons, and some were done with transverse polarization and 100 GeV muons. Protons as well as deuterons were polarized by dynamic nuclear polarization (DNP) in three kinds of solid materials - butanol, ammonia, and deuterated butanol - with maximum degrees of polarization of 94%, 91% and 60%, respectively. Considerable attention was paid to the accuracies of the NMR polarization measurements and …
Measurement of the SMC muon beam polarisation using the asymmetry in the elastic scattering off polarised electrons
A muon beam polarimeter was built for the SMC experiment at the CERN SPS, for beam energies of 100 and 190 GeV. The beam polarisation is determined from the asymmetry in the elastic scattering off the polarised electrons of a ferromagnetic target whose magnetisation is periodically reversed. At muon energies of 100 and 190 GeV the measured polarisation is P-mu = -0.80 +/- 0.03 (stat.) +/- 0.02 (syst.) and P-mu = - 0.797 +/- 0.011 (stat.) +/- 0.012 (syst.), respectively. These results agree with measurements of the beam polarisation using a shape analysis of the decay positron energy spectrum. (C) 2000 Elsevier Science B.V. All rights reserved.
Search for coherent charged pion production in neutrino-carbon interactions
We report the result from a search for charged-current coherent pion production induced by muon neutrinos with a mean energy of 1.3 GeV. The data are collected with a fully active scintillator detector in the K2K long-baseline neutrino oscillation experiment. No evidence for coherent pion production is observed and an upper limit of $0.60 \times 10^{-2}$ is set on the cross section ratio of coherent pion production to the total charged-current interaction at 90% confidence level. This is the first experimental limit for coherent charged pion production in the energy region of a few GeV.
The spin-dependent structure function g1(x) of the deuteron from polarized deep-inelastic muon scattering
We present a new measurement of the spin-dependent structure function $g_{1}^{\rm d}$ of the deuteron from deep inelastic scattering of 190 GeV polarized muons on polarized deuterons. The results are combined with our previous measurements of $g_{1}^{\rm d}$. A perturbative QCD evolution in next-to-leading order is used to compute $g_{1}^{\rm d}(x)$ at a constant $Q^{2}$. At $Q^{2} = 10$ GeV$^{2}$, we obtain a first moment $\Gamma_{1}^{\rm d} = \int_{0}^{1} g_{1}^{\rm d}{\rm d}x = 0.041 \pm 0.008$, a flavour-singlet axial charge of the nucleon $a_{0} = 0.30 \pm 0.08$, and an axial charge of the strange quark $a_{s} = -0.09 \pm 0.03$. Using our earlier determination of $\Gamma_{1}^{\rm p}$, …
The T2K Experiment
The T2K experiment is a long-baseline neutrino oscillation experiment. Its main goal is to measure the last unknown lepton sector mixing angle {\theta}_{13} by observing {\nu}_e appearance in a {\nu}_{\mu} beam. It also aims to make a precision measurement of the known oscillation parameters, {\Delta}m^{2}_{23} and sin^{2} 2{\theta}_{23}, via {\nu}_{\mu} disappearance studies. Other goals of the experiment include various neutrino cross section measurements and sterile neutrino searches. The experiment uses an intense proton beam generated by the J-PARC accelerator in Tokai, Japan, and is composed of a neutrino beamline, a near detector complex (ND280), and a far detector (Super-Kamiokande)…
Measurement of the spin-dependent structure function g1(x) of the deuteron
We report on the first measurement of the spin-dependent structure function g1d of the deuteron in the deep inelastic scattering of polarised muons off polarised deuterons, in the kinematical range 0.006<x<0.6, 1 GeV2<Q2<30 GeV2. The first moment, Γ1d=sh{phonetic}01 g1d dx=0.023±0.020 (stat.) ± 0.015 (syst.), is smaller than the prediction of the Ellis-Jaffe sum rules. Using earlier measurements of g1p, we infer the first moment of the spin-dependent neutron structure function g1n. The difference Γ1p-Γ1n=0.20 ±0.05 (stat.) ± 0.04 (syst.) agrees with the prediction of the Bjorken sum rule, Γ1p-Γ1n=0.191 ±0.002.
Measurement of inclusive pi(0) production in the charged-current interactions of neutrinos in a 1.3-GeV wide band beam
In this paper we report on the measurement of the rate of inclusive $\pi^0$ production induced by charged-current neutrino interactions in a C$_8$H$_8$ target at a mean energy of 1.3 GeV in the K2K near detector. Out of a sample of 11,606 charged current neutrino interactions, we select 479 $\pi^0$ events with two reconstructed photons. We find that the cross section for the inclusive $\pi^0$ production relative to the charged-current quasi-elastic cross section is $$\frac{\sigma_{CC\pi^0}}{\sigma_{CCQE}}=0.426\pm0.032(stat.)\pm0.035(syst.)$$ The energy dependent cross section ratio is also measured. The results are consistent with previous experiments for exclusive channels on different ta…