0000000000178077

AUTHOR

Haiyan Gao

showing 8 related works from this author

Virtual Compton scattering and the generalized polarizabilities of the proton atQ2=0.92and 1.76 GeV2

2012

Virtual Compton Scattering (VCS) on the proton has been studied at Jefferson Lab using the exclusive photon electroproduction reaction (e p --> e p gamma). This paper gives a detailed account of the analysis which has led to the determination of the structure functions P{sub LL}-P{sub TT}/epsilon and P{sub LT}, and the electric and magnetic generalized polarizabilities (GPs) alpha{sub E}(Q{sup 2}) and beta{sub M}(Q{sup 2}) at values of the four-momentum transfer squared Q{sup 2} = 0.92 and 1.76 GeV{sup 2}. These data, together with the results of VCS experiments at lower momenta, help building a coherent picture of the electric and magnetic GPs of the proton over the full measured Q{sup 2}-…

PhysicsNuclear and High Energy PhysicsParticle physicsPhotonChiral perturbation theoryProton010308 nuclear & particles physicsStructure functionCompton scattering01 natural sciencesNuclear physicsAmplitudeDispersion relation0103 physical sciencesBeta (velocity)010306 general physicsPhysical Review C
researchProduct

Charge Form Factor of the Neutron at Low Momentum Transfer from theH→2(e→,e′n)H1Reaction

2008

We report new measurements of the neutron charge form factor at low momentum transfer using quasielastic electrodisintegration of the deuteron. Longitudinally polarized electrons at an energy of 850 MeV were scattered from an isotopically pure, highly polarized deuterium gas target. The scattered electrons and coincident neutrons were measured by the Bates Large Acceptance Spectrometer Toroid (BLAST) detector. The neutron form factor ratio ${G}_{E}^{n}/{G}_{M}^{n}$ was extracted from the beam-target vector asymmetry ${A}_{\mathrm{ed}}^{V}$ at four-momentum transfers ${Q}^{2}=0.14$, 0.20, 0.29, and $0.42\text{ }\text{ }(\mathrm{GeV}/c{)}^{2}$.

Physicsmedia_common.quotation_subjectNuclear TheoryMomentum transferForm factor (quantum field theory)General Physics and AstronomyCharge (physics)ElectronAsymmetryDeuteriumHigh Energy Physics::ExperimentNeutronAtomic physicsNuclear ExperimentEnergy (signal processing)media_commonPhysical Review Letters
researchProduct

Electron Ion Collider: The Next QCD Frontier - Understanding the glue that binds us all

2016

This White Paper presents the science case of an Electron-Ion Collider (EIC), focused on the structure and interactions of gluon-dominated matter, with the intent to articulate it to the broader nuclear science community. It was commissioned by the managements of Brookhaven National Laboratory (BNL) and Thomas Jefferson National Accelerator Facility (JLab) with the objective of presenting a summary of scientific opportunities and goals of the EIC as a follow-up to the 2007 NSAC Long Range plan. This document is a culmination of a community-wide effort in nuclear science following a series of workshops on EIC physics and, in particular, the focused ten-week program on "Gluons and quark sea a…

Nuclear and High Energy PhysicsParticle physicsNuclear Theorynucl-thhadrons gluons electron-ion colliderFOS: Physical sciencesnucl-ex01 natural sciencesAtomicLinear particle acceleratorgluonsHigh Energy Physics - Experimentlaw.inventionColor-glass condensateNuclear physicsNuclear Theory (nucl-th)High Energy Physics - Experiment (hep-ex)White paperHigh Energy Physics - Phenomenology (hep-ph)Particle and Plasma Physicslawquantum chromodynamics0103 physical sciencesNuclear Physics - ExperimentNuclearNuclear Experiment (nucl-ex)010306 general physicsColliderNuclear ExperimentQuantum chromodynamicsPhysics010308 nuclear & particles physicshep-exMolecularelectron-ion colliderParticle acceleratorhep-phNuclear & Particles PhysicsNATURAL SCIENCES. Physics.GluonPRIRODNE ZNANOSTI. Fizika.High Energy Physics - PhenomenologyhadronsElectron-Ion Collider (EIC)Quark–gluon plasma
researchProduct

International workshop on next generation gamma-ray source

2022

Journal of physics / G 49(1), 010502 (2022). doi:10.1088/1361-6471/ac2827

Accelerator Physics (physics.acc-ph)Nuclear and High Energy Physics[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]Nuclear Theorynucleon: structurepi: photoproduction[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph]conference summarynuclear astrophysicsFOS: Physical scienceslow-energy QCD[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]530bremsstrahlung01 natural scienceselectron: acceleratorNuclear Theory (nucl-th)parity: violationnuclear physicsquantum chromodynamics0103 physical sciencesAgency (sociology)ddc:530gamma-rayApplied researchNuclear Experiment (nucl-ex)010306 general physicsphoton: beamNuclear Experimentactivity reportenergy: lowPhysicsastrophysics010308 nuclear & particles physicsInformation sharinglaserhadronic parity violationgamma raynuclear structureSystems engineeringPhysics - Accelerator PhysicsCompton scatteringJournal of Physics G: Nuclear and Particle Physics
researchProduct

Backward electroproduction ofπ0mesons on protons in the region of nucleon resonances at four momentum transfer squaredQ2=1.0GeV2

2004

Exclusive electroproduction of pi{sup 0} mesons on protons in the backward hemisphere has been studied at Q2 = 1.0 GeV2 by detecting protons in the forward direction in coincidence with scattered electrons from the 4 GeV electron beam in Jefferson Lab's Hall A. The data span the range of the total (gamma*p) center-of-mass energy W from the pion production threshold to W = 2.0 GeV. The differential cross sections sigma{sub T} + epsilon sigma{sub L}, sigma{sub TL}, and sigma{sub TT} were separated from the azimuthal distribution and are presented together with the MAID and SAID parameterizations.

PhysicsNuclear and High Energy PhysicsParticle physicsMeson010308 nuclear & particles physicsNuclear TheoryHadronMomentum transferSigma01 natural sciencesNuclear physicsBaryonPion0103 physical sciencesHigh Energy Physics::ExperimentNuclear Experiment010306 general physicsNucleonLeptonPhysical Review C
researchProduct

Virtual Compton Scattering and Neutral Pion Electroproduction in the Resonance Region up to the Deep Inelastic Region at Backward Angles

2009

We have made the first measurements of the virtual Compton scattering (VCS) process via the H$(e,e'p)\gamma$ exclusive reaction in the nucleon resonance region, at backward angles. Results are presented for the $W$-dependence at fixed $Q^2=1$ GeV$^2$, and for the $Q^2$-dependence at fixed $W$ near 1.5 GeV. The VCS data show resonant structures in the first and second resonance regions. The observed $Q^2$-dependence is smooth. The measured ratio of H$(e,e'p)\gamma$ to H$(e,e'p)\pi^0$ cross sections emphasizes the different sensitivity of these two reactions to the various nucleon resonances. Finally, when compared to Real Compton Scattering (RCS) at high energy and large angles, our VCS data…

Elastic scatteringPhysicsNuclear and High Energy PhysicsParticle physics010308 nuclear & particles physicsScatteringCompton scatteringResonanceFOS: Physical sciencesInelastic scattering[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Deep inelastic scattering01 natural sciencesHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)Pion0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear Experiment (nucl-ex)010306 general physicsNucleonNuclear Experiment
researchProduct

The BLAST experiment

2009

The Bates large acceptance spectrometer toroid (BLAST) experiment was operated at the MIT-Bates Linear Accelerator Center from 2003 until 2005. The detector and experimental program were designed to study, in a systematic manner, the spin-dependent electromagnetic interaction in few-nucleon systems. As such the data will provide improved measurements for neutron, proton, and deuteron form factors. The data will also allow details of the reaction mechanism, such as the role of final state interactions, pion production, and resonances to be studied. The experiment used: a longitudinally polarized electron beam stored in the South Hall Storage Ring; a highly polarized, isotopically pure, inter…

Nuclear and High Energy PhysicsTracking detectorScintillator detectorCherenkov detectorNuclear TheoryLinear particle acceleratorlaw.inventionNuclear physicslawNeutron detectionSCATTERINGNeutronSPECTROMETERSTORAGE-RINGBLASTPHOTOEMISSIONNuclear ExperimentInstrumentationCherenkov radiationELECTRON-SPIN POLARIZATIONPhysicsPolarized beamSpectrometerPolarized targetDetectorGAASGAS-TARGETPERFORMANCEPOLARIMETERStorage ringStorage ringSYSTEMCherenkov detectorNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors, and Associated Equipment
researchProduct

Measurement of double-polarization asymmetries in the quasi-elastic Process

2018

We report on a precise measurement of double-polarization asymmetries in electron-induced breakup of He3 proceeding to pd and ppn final states, performed in quasi-elastic kinematics at Q2=0.25(GeV/c)2 for missing momenta up to 250MeV/c. These observables represent highly sensitive tools to investigate the electromagnetic and spin structure of He3 and the relative importance of two- and three-body effects involved in the breakup reaction dynamics. The measured asymmetries cannot be satisfactorily reproduced by state-of-the-art calculations of He3 unless their three-body segment is adjusted, indicating that the spin-dependent part of the nuclear interaction governing the three-body breakup pr…

PhysicsNuclear and High Energy Physics010308 nuclear & particles physicsNuclear TheoryObservableKinematicsSpin structurePolarization (waves)Breakup01 natural sciencesp-processNuclear interactionNuclear physicsReaction dynamics0103 physical sciencesNuclear Experiment010306 general physicsPhysics Letters
researchProduct