0000000000178123
AUTHOR
Yuri Kudryavtsev
Beta decay of neutron-rich cobalt and nickel isotopes
We report on the first β-γ spectroscopy measurements of the neutron-rich 68–70Co and 70–74Ni nuclei, produced in proton-induced fission of 238U and ionized in a laser ion guide coupled to an on-line mass separator. Several γ lines from the decay of these nuclei have been identified, half-lives determined and production cross sections deduced. The derived level schemes for the copper and nickel isotopes show that the occupation of the ν(1g9/2) state has a strong influence on the structure of these neutron-rich nuclei. This may have a clear impact on the predicted structure and decay properties of doubly-magic 78Ni.
Measurement of the first ionization potential of astatine by laser ionization spectroscopy
The radioactive element astatine exists only in trace amounts in nature. Its properties can therefore only be explored by study of the minute quantities of artificially produced isotopes or by performing theoretical calculations. One of the most important properties influencing the chemical behaviour is the energy required to remove one electron from the valence shell, referred to as the ionization potential. Here we use laser spectroscopy to probe the optical spectrum of astatine near the ionization threshold. The observed series of Rydberg states enabled the first determination of the ionization potential of the astatine atom, 9.31751(8) eV. New ab initio calculations are performed to sup…
Resonant laser ionization of polonium at rilis-isolde for the study of ground- and isomer-state properties
Three new ionization schemes for polonium have been tested with the resonant ionization laser ion source (RILIS) during the on-line production of 196Po in a UCx target at ISOLDE. The saturation of the atomic transitions has been observed and the yields of the isotope chain 193–198,200,202,204Po have been measured. This development provides the necessary groundwork for performing in-source resonant ionization spectroscopy on the neutron-deficient polonium isotopes (Z = 84). ispartof: Nuclear Instruments & Methods in Physics Research B vol:266 issue:19 pages:4403-4406 ispartof: location:FRANCE, Deauville status: published
Off-line studies of the laser ionization of yttrium at the IGISOL facility
A laser ion source is under development at the IGISOL facility, Jyvaskyla, in order to address deficiencies in the ion guide technique. The key elements of interest are those of a refractory nature, whose isotopes and isomers are widely studied using both laser spectroscopic and high precision mass measurement techniques. Yttrium has been the first element of choice for the new laser ion source. In this work we present a new coupled dye-Ti:Sapphire laser scheme and give a detailed discussion of the results obtained from laser ionization of yttrium atoms produced in an ion guide via joule heating of a filament. The importance of not only gas purity, but indeed the baseline vacuum pressure in…
Magicity of theN68iSemidouble-Closed-Shell Nucleus Probed by Gamow-Teller Decay of the Odd-ANeighbors
The particle-hole excitations through the $N\phantom{\rule{0ex}{0ex}}=\phantom{\rule{0ex}{0ex}}40$ subshell around ${}^{68}\mathrm{Ni}$ have been studied by the $\ensuremath{\beta}$ decay of ${}^{69}\mathrm{Co}$ and ${}^{69}\mathrm{Ni}$. The half-life of ${}^{69}\mathrm{Co}$ was measured to be 0.22(2) s, and a new $\ensuremath{\beta}$-decaying isomer with a half-life of 3.5(5) s was identified in ${}^{69}\mathrm{Ni}$. From the decay of the ${}^{69}\mathrm{Ni}$ isomer a 9(4)% mixing of the $\ensuremath{\pi}{p}_{3/2}^{+1}\ensuremath{\nu}{p}_{1/2}^{\ensuremath{-}2}\ensuremath{\nu}{g}_{9/2}^{+2}$ configuration into the ground state of ${}^{69}\mathrm{Cu}$ can be deduced. Significant polarizatio…
β decay of67Co
The \ensuremath{\beta}-decay properties of ${}^{67}\mathrm{Co}$ produced in proton-induced fission of ${}^{238}\mathrm{U}$ were measured by the detection of \ensuremath{\beta}-delayed \ensuremath{\gamma} rays emitted from an isotopically pure mass-separated source obtained by laser ionization. The measured half-life of 0.425(20) s is more accurate than previous values. New \ensuremath{\gamma} transitions were observed, and corresponding branching ratios and $\mathrm{log}\mathrm{ft}$ values were deduced. The ${}^{67}\mathrm{Co}$ decay scheme is discussed in terms of the single-particle shell model.
Beta Decay of68–74Niand Level Structure of Neutron-Rich Cu Isotopes
The isotopes ${}^{68--74}\mathrm{Ni}$, of interest both for nuclear physics and astrophysics, have been produced in proton-induced fission of ${}^{238}\mathrm{U}$ and ionized in a laser ion guide coupled to an on-line mass separator. Their $\ensuremath{\beta}$ decay was studied by means of $\ensuremath{\beta}$- $\ensuremath{\gamma}$ and $\ensuremath{\gamma}$- $\ensuremath{\gamma}$ spectroscopy. Half-lives have been determined and production cross sections extracted. A partial level scheme is presented for ${}^{73}\mathrm{Cu}$ and additional levels for ${}^{71}\mathrm{Cu}$, providing evidence for a sharply lowered position of the $\ensuremath{\pi}{1f}_{5/2}$ orbital as occupancy of the $\ens…
Beta decay of neutron-rich Co: Probing single-particle states at and above the N=40 subshell closure
Neutron-rich Co nuclei with A=66–70 were produced by the laser-ionization isotope-separation on-line method. The β decay from these nuclei has been studied. A case example is given by reporting on the observed decay scheme of 68Co. The half life of the ground-state decay of this nucleus was measured to be 0.21(3) seconds. In addition, a new β decaying isomer half life of 1.16(25) seconds was discovered. The level scheme of 68Ni has been significantly extended, and an interpretation of the observed levels is made by assuming that the N=40 gap has the characteristics of a shell closure.