0000000000178317

AUTHOR

Daniel Wilhelm

Massive Boson Production at Small qT in Soft-Collinear Effective Theory

We study the differential cross sections for electroweak gauge-boson and Higgs production at small and very small transverse-momentum qT. Large logarithms are resummed using soft-collinear effective theory. The collinear anomaly generates a non-perturbative scale q⁎, which protects the processes from receiving large long-distance hadronic contributions. A numerical comparison of our predictions with data on the transverse-momentum distribution in Z-boson production at the Tevatron and LHC is given.

research product

Higgs-Boson Production at Small Transverse Momentum

Using methods from effective field theory, we have recently developed a novel, systematic framework for the calculation of the cross sections for electroweak gauge-boson production at small and very small transverse momentum q_T, in which large logarithms of the scale ratio m_V/q_T are resummed to all orders. This formalism is applied to the production of Higgs bosons in gluon fusion at the LHC. The production cross section receives logarithmically enhanced corrections from two sources: the running of the hard matching coefficient and the collinear factorization anomaly. The anomaly leads to the dynamical generation of a non-perturbative scale q_* ~ m_H e^{-const/\alpha_s(m_H)} ~ 8 GeV, whi…

research product

Electroweak Gauge-Boson and Higgs Production at Small qT: Infrared Safety from the Collinear Anomaly

We study the differential cross sections for electroweak gauge-boson and Higgs production at small and very small transverse-momentum $q_T$. Large logarithms are resummed using soft-collinear effective theory. The collinear anomaly generates a non-perturbative scale $q_*$, which protects the processes from receiving large long-distance hadronic contributions. A numerical comparison of our predictions with data on the transverse-momentum distribution in Z-boson production at the Tevatron and LHC is given.

research product