0000000000178334
AUTHOR
S. M. Rochester
On-Sky Tests of a High-Power Pulsed Laser for Sodium Laser Guide Star Adaptive Optics
We present results of on-sky tests performed in the summer of 2013 to characterize the performance of a prototype high-power pulsed laser for adaptive optics. The laser operates at a pulse repetition rate (PRR) of 600–800[Formula: see text]Hz, with a 6% duty cycle. Its coupling efficiency was found to be, in the best test case (using 18[Formula: see text]W of transmitted power), [Formula: see text] photons s[Formula: see text] sr[Formula: see text] atom[Formula: see text] W[Formula: see text] m2 when circular polarization was employed and [Formula: see text] photons s[Formula: see text] sr[Formula: see text] atom[Formula: see text] W[Formula: see text] m2 with linear polarization. No impro…
Polarization-driven spin precession of mesospheric sodium atoms
We report experimental results on the first on-sky observation of atomic spin precession of mesospheric sodium driven by polarization modulation of a continuous-wave laser. The magnetic resonance was remotely detected from the ground by observing the enhancement of induced fluorescence when the driving frequency approached the precession frequency of sodium in the mesosphere, between 85 km and 100 km altitude. The experiment was performed at La Palma, and the uncertainty in the measured Larmor frequency ($\approx$260 kHz) corresponded to an error in the geomagnetic field of 0.4 mG. The results are consistent with geomagnetic field models and with the theory of light-atom interaction in the …
Frequency chirped continuous-wave sodium laser guide stars: modeling and optimization
We numerically study a method to increase the photon return flux of continuous-wave laser guide stars using one-dimensional atomic cooling principles. The method relies on chirping the laser towards higher frequencies following the change in velocity of sodium atoms due to recoil, which raises atomic populations available for laser excitation within the Doppler distribution. The efficiency of this effect grows with the average number of atomic excitations between two atomic collisions in the mesosphere. We find the parameters for maximizing the return flux and evaluate the performance of chirping for operation at La Palma. According to our simulations, the optimal chirp rate lies between 0.…
A Precise Photometric Ratio via Laser Excitation of the Sodium Layer II: Two-photon Excitation Using Lasers Detuned from 589.16 nm and 819.71 nm Resonances
This article is the second in a pair of articles on the topic of the generation of a two-color artificial star (which we term a "laser photometric ratio star," or LPRS) of de-excitation light from neutral sodium atoms in the mesosphere, for use in precision telescopic measurements in astronomy and atmospheric physics, and more specifically for the calibration of measurements of dark energy using type Ia supernovae. The two techniques respectively described in both this and the previous article would each generate an LPRS with a precisely 1:1 ratio of yellow (589/590 nm) photons to near-infrared (819/820 nm) photons produced in the mesosphere. Both techniques would provide novel mechanisms f…
Studies towards a directional polychromatic sodium laser guide star
In this work we discuss a mechanism for generation of a coherent source of light from the mesosphere as a new concept of directional laser guide star. In contrast to the near-isotropic spontaneous emission, nonlinear processes in atomic vapors like amplified spontaneous emission can yield highly directional emission in the forward and backward directions. Along with directional emission, excited sodium atoms also radiate at different wavelength creating a polychromatic laser guide star (PLGS). If feasible, a directional PLGS would provide a net gain in the return flux of several orders of magnitude compared to traditional LGS schemes, making possible laser-guided tip/tilt-correction in adap…
Simulations of continuous-wave sodium laser guide stars with polarization modulation at Larmor frequency
The return flux from a sodium laser guide star suffers, at large angles between the geomagnetic field and the laser beam, from the reduction in optical pumping due to spin-precession of sodium atoms. This detrimental effect can be mitigated by modulating the circular polarization of a continuous-wave laser beam in resonance with the Larmor frequency of sodium atoms in the mesosphere. We present an investigation based on numerical modeling to evaluate the brightness enhancement of a laser guide star with polarization modulation of a continuous-wave laser beam at different observatories.
Sodium vapor cell laser guide star experiments for continuous wave model validation
Recent numerical simulations and experiments on sodium Laser Guide Star (LGS) have shown that a continuous wave (CW) laser with circular polarization and re-pumping should maximize the fluorescent photon return flux to the wavefront sensor for adaptive optics applications. The orientation and strength of the geomagnetic field in the sodium layer also play an important role affecting the LGS return ux. Field measurements of the LGS return flux show agreement with the CW LGS model, however, fluctuations in the sodium column abundance and geomagnetic field intensity, as well as atmospheric turbulence, induce experimental uncertainties. We describe a laboratory experiment to measure the photon …
Suppression of nonlinear Zeeman effect and heading error in earth-field-range alkali-vapor magnetometers
The nonlinear Zeeman effect can induce splitting and asymmetries of magnetic-resonance lines in the geophysical magnetic field range. This is a major source of "heading error" for scalar atomic magnetometers. We demonstrate a method to suppress the nonlinear Zeeman effect and heading error based on spin locking. In an all-optical synchronously pumped magnetometer with separate pump and probe beams, we apply a radio-frequency field which is in-phase with the precessing magnetization. In an earth-range field, a multi-component asymmetric magnetic-resonance line with ? 60 Hz width collapses into a single peak with a width of 22 Hz, whose position is largely independent of the orientation of th…
Four-wave mixing in a ring cavity
We investigate a four-wave mixing process in an N interaction scheme in Rb vapor placed inside a low-finesse ring cavity. We observe strong amplification and generation of a probe signal, circulating in the cavity, in the presence of two strong optical pump fields. We study the variations in probe field gain and dispersion as functions of experimental parameters with an eye on potential application of such a system for enhanced rotation measurements. A density-matrix calculation is performed to model the system, and the theoretical results are compared to those of the experiment.
Comparison between observation and simulation of sodium LGS return flux with a 20W CW laser on Tenerife
We report on the comparison between observations and simulations of a completed 12-month field observation campaign at Observatorio del Teide, Tenerife, using ESO's transportable 20 watt CW Wendelstein laser guide star system. This mission has provided sodium photon return flux measurements of unprecedented detail regarding variation of laser power, polarization and sodium D2b repumping. The Raman fiber laser and projector technology are very similar to that employed in the 4LGSF/AOF laser facility, recently installed and commissioned at the VLT in Paranal. The simulations are based on the open source LGSBloch density matrix simulation package and we find good overall agreement with experim…
Polarization-driven spin precession of mesospheric sodium atoms: publisher's note.
This publisher's note corrects an error in the author listing of Opt. Lett.43, 5825 (2018)OPLEDP0146-959210.1364/OL.43.005825.
Efficient polarization of high-angular-momentum systems
We propose methods of optical pumping that are applicable to open, high-angular-momentum transitions in atoms and molecules, for which conventional optical pumping would lead to significant population loss. Instead of applying circularly polarized cw light, as in conventional optical pumping, we propose to use techniques for coherent population transfer (e.g., adiabatic fast passage) to arrange the atoms so as to increase the entropy removed from the system with each spontaneous decay from the upper state. This minimizes the number of spontaneous-emission events required to produce a stretched state, thus reducing the population loss due to decay to other states. To produce a stretched stat…