0000000000178351

AUTHOR

Franca Castiglione

0000-0003-2413-8808

showing 4 related works from this author

Chiroptical Phenomena in Reverse Micelles: The Case of (1R,2S)-Dodecyl (2-hydroxy-1-methyl-2-phenylethyl)dimethylammonium Bromide (DMEB)

2014

(1R,2S)-Dodecyl(2-hydroxy-1-methyl-2-phenylethyl)dimethylammonium bromide (DMEB) aggregates dispersed in carbon tetrachloride have been investigated by Fourier transform infrared (FT-IR), vibrational circular dichroism (VCD) and 1H nuclear magnetic resonance (NMR) spectroscopy at various surfactant concentration and water-to-surfactant molar ratio. Experimental data indicate that, even at the lowest investigated concentration and in absence of added water, DMEB molecules associate in supramolecular assemblies. At higher DMEB concentration the aggregates can confine water molecules, making it plausible to think that DMEB form reverse micelles and that water molecules are quite uniformly dist…

PharmacologyHydrogen bondOrganic ChemistrySupramolecular chemistryPhotochemistryMicelleCatalysisAnalytical Chemistrychemistry.chemical_compoundchemistryBromideDrug DiscoveryVibrational circular dichroismProton NMRMoleculeOrganic chemistryChirality (chemistry)SpectroscopyChirality
researchProduct

Direct experimental observation of mesoscopic fluorous domains in fluorinated room temperature ionic liquids

2017

Fluorinated room temperature ionic liquids (FRTILs) represent a class of solvent media that are attracting great attention due to their IL-specific properties as well as features stemming from their fluorous nature. Medium-to-long fluorous tails constitute a well-defined apolar moiety in the otherwise polar environment. Similarly to the case of alkyl tails, such chains are expected to result in the formation of self-assembled fluorous domains. So far, however, no direct experimental observation has been made of the existence of such structural heterogeneities on the nm scale. We report here the first experimental evidence of the existence of mesoscopic spatial segregation of fluorinated dom…

General Physics and AstronomyNanotechnology02 engineering and technologyNeutron scattering010402 general chemistryLAYER CAPACITOR APPLICATIONS; PERFLUOROALKYL SIDE-CHAINS; ANGLE NEUTRON-SCATTERING; PARTICLE MESH EWALD; PHYSICOCHEMICAL PROPERTIES; FORCE-FIELD; CATION SYMMETRY; STRUCTURAL-CHARACTERIZATION; AMMONIUM TETRAFLUOROBORATE; MOLECULAR SIMULATION01 natural sciencesionic liquidsionic liquids SANS nanostructuration fluorous domains NMR NOEchemistry.chemical_compoundMolecular dynamicsPhysics and Astronomy (all)nanostructurationMoietyPhysical and Theoretical ChemistryAlkylNOEchemistry.chemical_classificationfluorous domainsMesoscopic physicsSANSNuclear magnetic resonance spectroscopy021001 nanoscience & nanotechnologyNMR0104 chemical sciencesfluorinated ionic liquids neutron scattering x-ray diffraction structurechemistryChemical physicsIonic liquidPolar0210 nano-technology
researchProduct

Spectroscopic and Structural Investigation of the Confinement of D and L Dimethyl Tartrate in Lecithin Reverse Micelles

2009

The confinement of D and L dimethyl tartrate in lecithin reverse micelles dispersed in cyclohexane has been investigated by FT-IR, polarimetry, electronic and vibrational circular dichroism (ECD and VCD), 1H NMR, and small-angle X-ray scattering (SAXS). Measurements have been performed at room temperature as a function of the solubilizate-to-surfactant molar ratio (R) at fixed lecithin concentration. The analysis of experimental data indicates that the dimethyl tartrate molecules are solubilized within reverse micelles in proximity to the surfactant head groups in the same way for the D and L forms. The encapsulation of dimethyl tatrate within lecithin reverse micelles involves changes in i…

lecithin dimethyl tartrate FT-IR polarimetry circular dichroism NMR SAXSfood.ingredientCyclohexanemicellesTartrateLecithinMicellePolyethylene Glycolschemistry.chemical_compoundfoodLecithinsMaterials ChemistryOrganic chemistryPhysical and Theoretical ChemistryTartratesModels StatisticalDose-Response Relationship DrugChemistry PhysicalViscosityChemistrySmall-angle X-ray scatteringTemperaturetechnology industry and agricultureElasticitySurfaces Coatings and FilmslecithinModels ChemicalSpectrophotometryVibrational circular dichroismMicellar solutionsPhosphatidylcholinesProton NMRPhysical chemistrylipids (amino acids peptides and proteins)Rheologydimethyl tartrate
researchProduct

Multiple points of view of heteronuclear NOE: long range vs short range contacts in pyrrolidinium based ionic liquids in the presence of Li salts.

2015

The nuclear Overhauser enhancement (NOE) is a powerful tool of NMR spectroscopy extensively used to gain structural information in ionic liquids (ILs). A general model for the distance dependence of intermolecular NOE in ILs was recently proposed showing that NOE spots beyond the first solvation shell and accounts for long-range effects. This conclusion prompted for a deep rethinking of the NOE data interpretation in ILs. In this paper we present an extensive and quantitative study of N-propyl-N-methyl pyrrolidinium bis(trifluoromethanesulfonyl)imide (PYR13TFSI), the homologue with bis(fluorosulfonyl)imide (PYR13FSI), and their mixtures with LiTFSI based on 1H-19F and 1H-7LiNOE correlation …

Materials Chemistry2506 Metals and AlloysAtomic and Molecular Physics and OpticAnalytical chemistryCondensed Matter PhysicIonic liquidLithiumchemistry.chemical_compoundMaterials ChemistryPhysical and Theoretical ChemistryImideHeteronuclear NOESpectroscopyIntermolecular NOE;Fluorosulfonylimide;Ionic liquids;NMR;Trifluoromethanesulfonimide;Pyrrolidinium;Lithium;Heteronuclear NOELarmor precessionFluorosulfonylimideIntermolecular NOEElectronic Optical and Magnetic MaterialIntermolecular forceHeteronuclear NOE NMR Ionic liquids Pyrrolidinium Fluorosulfonylimide Trifluoromethanesulfonimide Lithium Intermolecular NOENuclear magnetic resonance spectroscopyCondensed Matter PhysicsAtomic and Molecular Physics and OpticsNMRElectronic Optical and Magnetic MaterialsIonic liquidsCrystallographyTrifluoromethanesulfonimideSolvation shellHeteronuclear moleculechemistryIonic liquidPolarPyrrolidinium
researchProduct