0000000000178593
AUTHOR
P. Stoler
Precise Measurement of the Neutron Magnetic Form FactorGMnin the Few-GeV2Region
The neutron elastic magnetic form factor was extracted from quasielastic electron scattering on deuterium over the range Q;{2}=1.0-4.8 GeV2 with the CLAS detector at Jefferson Lab. High precision was achieved with a ratio technique and a simultaneous in situ calibration of the neutron detection efficiency. Neutrons were detected with electromagnetic calorimeters and time-of-flight scintillators at two beam energies. The dipole parametrization gives a good description of the data.
Measurement ofN14(γ, π+)C14(g.s.)at 200 MeV: A Test of the Distorted-Wave Impulse Approximation for Charged-Pion Photoproduction below theΔ(1232)Resonance
Differential cross sections for $^{14}\mathrm{N}(\ensuremath{\gamma}, {\ensuremath{\pi}}^{+})^{14}\mathrm{C}(\mathrm{g}.\mathrm{s}.)$ (${0}^{+}$1) have been measured for an incident photon energy ${E}_{\ensuremath{\gamma}}=200$ MeV at laboratory angles of 45\ifmmode^\circ\else\textdegree\fi{}, 60\ifmmode^\circ\else\textdegree\fi{}, 75\ifmmode^\circ\else\textdegree\fi{}, 90\ifmmode^\circ\else\textdegree\fi{}, 120\ifmmode^\circ\else\textdegree\fi{}, and 140\ifmmode^\circ\else\textdegree\fi{}. Momentum-space distorted-wave-impulse-approximation calculations, using a complete treatment of a one-body pion-photoproduction operator, are found to be in excellent agreement with the experimental data…
Beam-Helicity Asymmetries in Double-Charged-Pion Photoproduction on the Proton
Beam-helicity asymmetries for the two-pion-photoproduction reaction gamma + p --> p pi+ pi- have been studied for the first time in the resonance region for center-of-mass energies between 1.35 GeV and 2.30 GeV. The experiment was performed at Jefferson Lab with the CEBAF Large Acceptance Spectrometer using circularly polarized tagged photons incident on an unpolarized hydrogen target. Beam-helicity-dependent angular distributions of the final-state particles were measured. The large cross-section asymmetries exhibit strong sensitivity to the kinematics and dynamics of the reaction. The data are compared with the results of various phenomenological model calculations, and show that these…
N14(γ,π+)14Cgsat photon energies of 230, 260, and 320 MeV
The pion angular distribution for {sup 14}N({gamma},{pi}{sup +}){sup 14}C{sub g.s.} has been measured at photon energies of 230 and 260 MeV. These data are consistent with the trend of our earlier data at 200 and 320 MeV. Additional forward angle data were obtained at 320 MeV. The results are compared to several calculations based on the distorted-wave impulse approximation and on the delta-hole model. The data are best fit by the calculations of Tiator {ital et} {ital al}. which use the delta-hole model in the resonance channel. These calculations fit the 230 MeV data well and underestimate the 260 and 320 MeV data by about 25%.