0000000000178623

AUTHOR

D. G. Crabb

showing 4 related works from this author

Precise Measurement of the Neutron Magnetic Form FactorGMnin the Few-GeV2Region

2009

The neutron elastic magnetic form factor was extracted from quasielastic electron scattering on deuterium over the range Q;{2}=1.0-4.8 GeV2 with the CLAS detector at Jefferson Lab. High precision was achieved with a ratio technique and a simultaneous in situ calibration of the neutron detection efficiency. Neutrons were detected with electromagnetic calorimeters and time-of-flight scintillators at two beam energies. The dipole parametrization gives a good description of the data.

Physics010308 nuclear & particles physicsScatteringNuclear TheoryGeneral Physics and AstronomyScintillator7. Clean energy01 natural sciencesNuclear physicsDipoleDeuterium0103 physical sciencesMagnetic form factorNeutron detectionHigh Energy Physics::ExperimentNeutronNuclear Experiment010306 general physicsElectron scatteringPhysical Review Letters
researchProduct

Spin asymmetries for events with highpThadrons in DIS and an evaluation of the gluon polarization

2004

We present a measurement of the longitudinal spin cross section asymmetry for deep-inelastic muon-nucleon interactions with two high transverse momentum hadrons in the final state. Two methods of event classification are used to increase the contribution of the photon-gluon fusion process to above 30%. The most effective one, based on a neural network approach, provides the asymmetries A(p)lN(-->)lhhX=0.030+/-0.057(stat)+/-0.010(syst) and A(d)lN(-->)lhhX=0.070+/-0.076(stat)+/-0.010(syst). From these values we derive an averaged gluon polarization DeltaG/G=-0.20+/-0.28(stat)+/-0.10(syst) at an average fraction of nucleon momentum carried by gluons =0.07.

PhysicsNuclear and High Energy PhysicsParticle physicsMeson production010308 nuclear & particles physicsmedia_common.quotation_subjectHadronDeep inelastic scatteringPolarization (waves)01 natural sciencesAsymmetryGluonNuclear physics0103 physical sciencesTransverse momentumHigh Energy Physics::ExperimentAstrophysics::Earth and Planetary AstrophysicsNuclear Experiment010306 general physicsNucleonmedia_commonPhysical Review D
researchProduct

Beam-Helicity Asymmetries in Double-Charged-Pion Photoproduction on the Proton

2005

Beam-helicity asymmetries for the two-pion-photoproduction reaction gamma + p --> p pi+ pi- have been studied for the first time in the resonance region for center-of-mass energies between 1.35 GeV and 2.30 GeV. The experiment was performed at Jefferson Lab with the CEBAF Large Acceptance Spectrometer using circularly polarized tagged photons incident on an unpolarized hydrogen target. Beam-helicity-dependent angular distributions of the final-state particles were measured. The large cross-section asymmetries exhibit strong sensitivity to the kinematics and dynamics of the reaction. The data are compared with the results of various phenomenological model calculations, and show that these…

Particle physicsPhotonProtonGeneral Physics and AstronomyFOS: Physical sciences13.60.-r 13.60.Le 13.88.+e[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)Pion0103 physical sciencesPhenomenological model[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentNuclear ExperimentPhysics010308 nuclear & particles physicsBremsstrahlungHelicity3. Good healthPair productionNucleon
researchProduct

The spin-dependent structure function g1(x) of the deuteron from polarized deep-inelastic muon scattering

1997

We present a new measurement of the spin-dependent structure function $g_{1}^{\rm d}$ of the deuteron from deep inelastic scattering of 190 GeV polarized muons on polarized deuterons. The results are combined with our previous measurements of $g_{1}^{\rm d}$. A perturbative QCD evolution in next-to-leading order is used to compute $g_{1}^{\rm d}(x)$ at a constant $Q^{2}$. At $Q^{2} = 10$ GeV$^{2}$, we obtain a first moment $\Gamma_{1}^{\rm d} = \int_{0}^{1} g_{1}^{\rm d}{\rm d}x = 0.041 \pm 0.008$, a flavour-singlet axial charge of the nucleon $a_{0} = 0.30 \pm 0.08$, and an axial charge of the strange quark $a_{s} = -0.09 \pm 0.03$. Using our earlier determination of $\Gamma_{1}^{\rm p}$, …

PhysicsDISNuclear and High Energy PhysicsStrange quarkMuonSMCScatteringg1 structure functionSMC; DIS; g1 structure functionPerturbative QCDDeep inelastic scatteringNuclear physicsHigh Energy Physics::ExperimentSum rule in quantum mechanicsNucleonParticle Physics - ExperimentSpin-½Physics Letters B
researchProduct