0000000000178706

AUTHOR

Lukáš Palatinus

0000-0002-8987-8164

showing 5 related works from this author

Innenrücktitelbild: First Step Towards a Devil's Staircase in Spin-Crossover Materials (Angew. Chem. 30/2016)

2016

Materials scienceCondensed matter physicsSpin crossover02 engineering and technologyGeneral Medicine010402 general chemistry021001 nanoscience & nanotechnology0210 nano-technology01 natural sciences0104 chemical sciencesAngewandte Chemie
researchProduct

Inside Back Cover: First Step Towards a Devil's Staircase in Spin-Crossover Materials (Angew. Chem. Int. Ed. 30/2016)

2016

International audience; Periodic and aperiodic spin-state concentration waves form during “Devil's staircase”-type spin-crossover in a new bimetallic 2D coordination polymer {Fe[(Hg(SCN)3)2](4,4′-bipy)2}n. In their Communication on page 8675 ff., J. A. Real, E. Collet et al. describe the appearance of spin-state concentration waves between long-range spatially ordered structures of low- and high-spin states during multistep spin-crossover.

[PHYS]Physics [physics]Phase transitionCondensed matter physics010405 organic chemistryChemistryCoordination polymerNanotechnologyGeneral Chemistry010402 general chemistry01 natural sciencesCatalysis0104 chemical scienceschemistry.chemical_compoundAperiodic graphSpin crossoverCondensed Matter::Strongly Correlated ElectronsCover (algebra)Bimetallic strip
researchProduct

3D Electron Diffraction: The Nanocrystallography Revolution

2019

Crystallography of nanocrystalline materials has witnessed a true revolution in the past 10 years, thanks to the introduction of protocols for 3D acquisition and analysis of electron diffraction data. This method provides single-crystal data of structure solution and refinement quality, allowing the atomic structure determination of those materials that remained hitherto unknown because of their limited crystallinity. Several experimental protocols exist, which share the common idea of sampling a sequence of diffraction patterns while the crystal is tilted around a noncrystallographic axis, namely, the goniometer axis of the transmission electron microscope sample stage. This Outlook review…

DiffractionMaterials scienceCryo-electron microscopyPhysical and chemical processesGeneral Chemical Engineering010402 general chemistry01 natural sciencesCrystalsCrystalOpticsQD1-999Structure determinationMaterials010405 organic chemistrybusiness.industryCrystal structureGeneral ChemistryNanocrystalline material0104 chemical sciencesChemistryElectron diffractionTransmission electron microscopyGoniometer[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]businessProtein crystallizationOutlook
researchProduct

Elektrónová a pásová štruktúra CuMnAs študovaná optickou a fotoemissinou spektroskopiou

2017

Tetragonal phase of CuMnAs progressively appears as one of the key materials for antiferromagnetic spintronics due to efficient current-induced spin-orbit torques whose existence can be directly inferred from crystal symmetry. Theoretical understanding of spintronic phenomena in this material, however, relies on the detailed knowledge of electronic structure (band structure and corresponding wave functions) which has so far been tested only to a limited extent. We show that AC permittivity (obtained from ellipsometry) and UV photoelectron spectra agree with density functional calculations. Together with the x-ray diffraction and precession electron diffraction tomography, our analysis confi…

DiffractionCondensed Matter - Materials ScienceMaterials scienceSpintronicsCondensed matter physicsPhotoemission spectroscopyMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesspintronics DFT photoemission optical properties CuMnAs02 engineering and technologyCrystal structureElectronic structure021001 nanoscience & nanotechnology01 natural sciences3. Good healthTetragonal crystal systemCondensed Matter::Materials ScienceSpintronika DFT fotoemissia optické vlastnosti CuMnAs0103 physical sciencesPrecession electron diffraction010306 general physics0210 nano-technologyElectronic band structure
researchProduct

The Elusive Structure of Magadiite, Solved by 3D Electron Diffraction and Model Building

2021

In addition to a great swelling ability, layered silicates also allow the functionalization of their interlayer region to form various robust green materials that are used as CO2 adsorbents, drug c...

Materials scienceGeneral Chemical Engineering02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesAdsorptionChemical engineeringElectron diffractionGreen materialsMaterials ChemistrymedicineSurface modificationSwellingmedicine.symptom0210 nano-technologyModel buildingChemistry of Materials
researchProduct