0000000000178768

AUTHOR

Thanasis E. Economou

showing 12 related works from this author

Overview of the Spirit Mars Exploration Rover Mission to Gusev Crater: Landing site to Backstay Rock in the Columbia Hills

2006

Spirit landed on the floor of Gusev Crater and conducted initial operations on soil covered, rock-strewn cratered plains underlain by olivine-bearing basalts. Plains surface rocks are covered by wind-blown dust and show evidence for surface enrichment of soluble species as vein and void-filling materials and coatings. The surface enrichment is the result of a minor amount of transport and deposition by aqueous processes. Layered granular deposits were discovered in the Columbia Hills, with outcrops that tend to dip conformably with the topography. The granular rocks are interpreted to be volcanic ash and/or impact ejecta deposits that have been modified by aqueous fluids during and/or after…

Atmospheric ScienceOutcropGeochemistrySoil ScienceAquatic ScienceOceanographyImpact craterGeochemistry and PetrologyEarth and Planetary Sciences (miscellaneous)EjectaDust devilGeomorphologyEarth-Surface ProcessesWater Science and TechnologyBasaltgeographygeography.geographical_feature_categoryEcologyPaleontologyForestryVolcanic rockGeophysicsSpace and Planetary ScienceClastic rockGeologyVolcanic ashJournal of Geophysical Research: Planets
researchProduct

The Opportunity Rover's Athena Science Investigation at Meridiani Planum, Mars

2004

The Mars Exploration Rover Opportunity has investigated the landing site in Eagle crater and the nearby plains within Meridiani Planum. The soils consist of fine-grained basaltic sand and a surface lag of hematite-rich spherules, spherule fragments, and other granules. Wind ripples are common. Underlying the thin soil layer, and exposed within small impact craters and troughs, are flat-lying sedimentary rocks. These rocks are finely laminated, are rich in sulfur, and contain abundant sulfate salts. Small-scale cross-lamination in some locations provides evidence for deposition in flowing liquid water. We interpret the rocks to be a mixture of chemical and siliciclastic sediments formed by e…

Meridiani PlanumGeologic SedimentsMineralsMultidisciplinaryExtraterrestrial EnvironmentAtmosphereSilicatesGeochemistryMarsWaterMineralogyWindMars Exploration Programengineering.materialFerric CompoundsDiagenesisImpact craterConcretionengineeringSiliciclasticSedimentary rockComposition of MarsSpacecraftEvolution PlanetaryGeologyScience
researchProduct

The Spirit Rover's Athena science investigation at Gusev Crater, Mars.

2004

The Mars Exploration Rover Spirit and its Athena science payload have been used to investigate a landing site in Gusev crater. Gusev is hypothesized to be the site of a former lake, but no clear evidence for lacustrine sedimentation has been found to date. Instead, the dominant lithology is basalt, and the dominant geologic processes are impact events and eolian transport. Many rocks exhibit coatings and other characteristics that may be evidence for minor aqueous alteration. Any lacustrine sediments that may exist at this location within Gusev apparently have been buried by lavas that have undergone subsequent impact disruption.

BasaltgeographyGeologic SedimentsGeological PhenomenaMineralsMultidisciplinarygeography.geographical_feature_categoryExtraterrestrial EnvironmentLithologyAtmosphereMarsWaterGeologyMars Exploration ProgramWindGeologic SedimentsAstrobiologyVolcanic rockIgneous rockMagneticsImpact craterComposition of MarsGeologyScience (New York, N.Y.)
researchProduct

Opportunity Mars Rover mission: Overview and selected results from Purgatory ripple to traverses to Endeavour crater

2011

Opportunity has been traversing the Meridiani plains since 25 January 2004 (sol 1), acquiring numerous observations of the atmosphere, soils, and rocks. This paper provides an overview of key discoveries between sols 511 and 2300, complementing earlier papers covering results from the initial phases of the mission. Key new results include (1) atmospheric argon measurements that demonstrate the importance of atmospheric transport to and from the winter carbon dioxide polar ice caps; (2) observations showing that aeolian ripples covering the plains were generated by easterly winds during an epoch with enhanced Hadley cell circulation; (3) the discovery and characterization of cobbles and boul…

Atmospheric ScienceEcologyEarth sciencePaleontologySoil ScienceMars exploration roverForestryAquatic ScienceOceanographyAstrobiologyMars roverGeophysicsImpact craterSpace and Planetary ScienceGeochemistry and PetrologyEarth and Planetary Sciences (miscellaneous)PurgatoryGeologyEarth-Surface ProcessesWater Science and Technology
researchProduct

Geochemical properties of rocks and soils in Gusev Crater, Mars: Results of the Alpha Particle X-Ray Spectrometer from Cumberland Ridge to Home Plate

2008

Geochemical diversity of rocks and soils has been discovered by the Alpha Particle X-Ray Spectrometer (APXS) during Spirit’s journey over Husband Hill and down into the Inner Basin from sol 470 to 1368. The APXS continues to operate nominally with no changes in calibration or spectral degradation over the course of the mission. Germanium has been added to the Spirit APXS data set with the confirmation that it occurs at elevated levels in many rocks and soils around Home Plate. Twelve new rock classes and two new soil classes have been identified at the Spirit landing site since sol 470 on the basis of the diversity in APXS geochemistry. The new rock classes are Irvine (alkaline basalt…

Atmospheric ScienceOutcropSoil ScienceMineralogyPyroclastic rockMarsWeatheringAquatic ScienceAlpha particle X-ray spectrometerOceanographyImpact craterGeochemistry and PetrologyEarth and Planetary Sciences (miscellaneous)Earth-Surface ProcessesWater Science and TechnologygeochemistryBasaltEcologyPaleontologyForestrySoil classificationIgneous rockGeophysicsSpace and Planetary ScienceweatheringGeology
researchProduct

Soils of Eagle crater and Meridiani Planum at the Opportunity Rover landing site.

2004

The soils at the Opportunity site are fine-grained basaltic sands mixed with dust and sulfate-rich outcrop debris. Hematite is concentrated in spherules eroded from the strata. Ongoing saltation exhumes the spherules and their fragments, concentrating them at the surface. Spherules emerge from soils coated, perhaps from subsurface cementation, by salts. Two types of vesicular clasts may represent basaltic sand sources. Eolian ripples, armored by well-sorted hematite-rich grains, pervade Meridiani Planum. The thickness of the soil on the plain is estimated to be about a meter. The flatness and thin cover suggest that the plain may represent the original sedimentary surface.

Meridiani PlanumRover Landing SiteGeologic SedimentsMineralsMultidisciplinaryExtraterrestrial EnvironmentOutcropSilicatesSpectrum AnalysisGeochemistryMineralogyMarsWaterHematiteFerric CompoundsImpact craterClastic rockvisual_artvisual_art.visual_art_mediumAeolian processesSedimentary rockMeridiani PlanumSpacecraftGraded beddingGeologyScience (New York, N.Y.)
researchProduct

Meteorites on Mars observed with the Mars Exploration Rovers

2008

[1] Reduced weathering rates due to the lack of liquid water and significantly greater typical surface ages should result in a higher density of meteorites on the surface of Mars compared to Earth. Several meteorites were identified among the rocks investigated during Opportunity's traverse across the sandy Meridiani plains. Heat Shield Rock is a IAB iron meteorite and has been officially recognized as “Meridiani Planum.” Barberton is olivine-rich and contains metallic Fe in the form of kamacite, suggesting a meteoritic origin. It is chemically most consistent with a mesosiderite silicate clast. Santa Catarina is a brecciated rock with a chemical and mineralogical composition similar to Bar…

Atmospheric ScienceEcologyPaleontologySoil ScienceForestryMars Exploration ProgramAquatic ScienceOceanographyIron meteoriteStrewn fieldAstrobiologyKamaciteMesosideriteGeophysicsImpact craterMeteoriteSpace and Planetary ScienceGeochemistry and PetrologyChondriteEarth and Planetary Sciences (miscellaneous)GeologyEarth-Surface ProcessesWater Science and TechnologyJournal of Geophysical Research
researchProduct

Characterization and petrologic interpretation of olivine-rich basalts at Gusev Crater, Mars

2006

Rocks on the floor of Gusev crater are basalts of uniform composition and mineralogy. Olivine, the only mineral to have been identified or inferred from data by all instruments on the Spirit rover, is especially abundant in these rocks. These picritic basalts are similar in many respects to certain Martian meteorites (olivine-phyric shergottites). The olivine megacrysts in both have intermediate compositions, with modal abundances ranging up to 20-30%. Associated minerals in both include low-calcium and high-calcium pyroxenes, plagioclase of intermediate composition, iron-titanium-chromium oxides, and phosphate. These rocks also share minor element trends, reflected in their nickel-magnesiu…

Atmospheric ScienceGeochemistrySoil SciencePyroxeneAquatic Scienceengineering.materialOceanographyGeochemistry and PetrologyEarth and Planetary Sciences (miscellaneous)PlagioclaseIntermediate compositionAchondriteEarth-Surface ProcessesWater Science and TechnologyBasaltgeographyOlivinegeography.geographical_feature_categoryEcologyPaleontologyForestryVolcanic rockIgneous rockGeophysicsSpace and Planetary ScienceengineeringGeologyJournal of Geophysical Research: Planets
researchProduct

Overview of the Opportunity Mars Exploration Rover Mission to Meridiani Planum: Eagle Crater to Purgatory Ripple

2006

The Mars Exploration Rover Opportunity touched down at Meridiani Planum in January 2004 and since then has been conducting observations with the Athena science payload. The rover has traversed more than 5 km, carrying out the first outcrop-scale investigation of sedimentary rocks on Mars. The rocks of Meridiani Planum are sandstones formed by eolian and aqueous reworking of sand grains that are composed of mixed fine-grained siliciclastics and sulfates. The siliciclastic fraction was produced by chemical alteration of a precursor basalt. The sulfates are dominantly Mg-sulfates and also include Ca-sulfates and jarosite. The stratigraphic section observed to date is dominated by eolian bedfor…

Meridiani PlanumAtmospheric ScienceEarth scienceGeochemistrySoil ScienceAquatic Scienceengineering.materialOceanographyGeochemistry and PetrologyConcretionStratigraphic sectionEarth and Planetary Sciences (miscellaneous)Earth-Surface ProcessesWater Science and Technologygeographygeography.geographical_feature_categoryEcologyBedrockPaleontologyForestryMars Exploration ProgramGeophysicsSpace and Planetary ScienceengineeringAeolian processesSiliciclasticSedimentary rockGeologyJournal of Geophysical Research: Planets
researchProduct

Nickel on Mars: Constraints on meteoritic material at the surface

2006

[1] Impact craters and the discovery of meteorites on Mars indicate clearly that there is meteoritic material at the Martian surface. The Alpha Particle X-ray Spectrometers (APXS) on board the Mars Exploration Rovers measure the elemental chemistry of Martian samples, enabling an assessment of the magnitude of the meteoritic contribution. Nickel, an element that is greatly enhanced in meteoritic material relative to samples of the Martian crust, is directly detected by the APXS and is observed to be geochemically mobile at the Martian surface. Correlations between nickel and other measured elements are used to constrain the quantity of meteoritic material present in Martian soil and sedimen…

MartianAtmospheric ScienceEcologyPaleontologySoil ScienceForestryMartian soilMars Exploration ProgramAquatic ScienceAlpha particle X-ray spectrometerOceanographyExploration of MarsAstrobiologyGeophysicsImpact craterMeteoriteSpace and Planetary ScienceGeochemistry and PetrologyMartian surfaceEarth and Planetary Sciences (miscellaneous)GeologyEarth-Surface ProcessesWater Science and TechnologyJournal of Geophysical Research: Planets
researchProduct

An integrated view of the chemistry and mineralogy of martian soils

2005

The mineralogical and elemental compositions of the martian soil are indicators of chemical and physical weathering processes. Using data from the Mars Exploration Rovers, we show that bright dust deposits on opposite sides of the planet are part of a global unit and not dominated by the composition of local rocks. Dark soil deposits at both sites have similar basaltic mineralogies, and could reflect either a global component or the general similarity in the compositions of the rocks from which they were derived. Increased levels of bromine are consistent with mobilization of soluble salts by thin films of liquid water, but the presence of olivine in analysed soil samples indicates that the…

Meridiani PlanumMultidisciplinaryOlivineSoil testMars Exploration RoverMineralogyWeatheringMartian soilengineering.materialmartian soilRocknestSoil waterengineeringComposition of Mars
researchProduct

Bounce Rock-A shergottite-like basalt encountered at Meridiani Planum, Mars

2011

Additional co-authors: Thanasis ECONOMOU, Steven P. GOREVAN, Brian C. HAHN, Gostar KLINGELHOFER, Timothy J. McCOY, Harry Y. McSWEEN Jr, Douglas W. MING, Richard V. MORRIS, Daniel S. RODIONOV, Steven W. SQUYRES, Heinrich WANKE, Shawn P. WRIGHT, Michael B. WYATT, Albert S. YEN

BasaltMeridiani PlanumGeophysicsWater on MarsSpace and Planetary ScienceComposition of MarsMars Exploration ProgramGeologyAstrobiologyMeteoritics & Planetary Science
researchProduct