0000000000178785

AUTHOR

Harry Y. Mcsween

Overview of the Spirit Mars Exploration Rover Mission to Gusev Crater: Landing site to Backstay Rock in the Columbia Hills

Spirit landed on the floor of Gusev Crater and conducted initial operations on soil covered, rock-strewn cratered plains underlain by olivine-bearing basalts. Plains surface rocks are covered by wind-blown dust and show evidence for surface enrichment of soluble species as vein and void-filling materials and coatings. The surface enrichment is the result of a minor amount of transport and deposition by aqueous processes. Layered granular deposits were discovered in the Columbia Hills, with outcrops that tend to dip conformably with the topography. The granular rocks are interpreted to be volcanic ash and/or impact ejecta deposits that have been modified by aqueous fluids during and/or after…

research product

The Opportunity Rover's Athena Science Investigation at Meridiani Planum, Mars

The Mars Exploration Rover Opportunity has investigated the landing site in Eagle crater and the nearby plains within Meridiani Planum. The soils consist of fine-grained basaltic sand and a surface lag of hematite-rich spherules, spherule fragments, and other granules. Wind ripples are common. Underlying the thin soil layer, and exposed within small impact craters and troughs, are flat-lying sedimentary rocks. These rocks are finely laminated, are rich in sulfur, and contain abundant sulfate salts. Small-scale cross-lamination in some locations provides evidence for deposition in flowing liquid water. We interpret the rocks to be a mixture of chemical and siliciclastic sediments formed by e…

research product

In situ evidence for an ancient aqueous environment at Meridiani Planum, Mars.

Sedimentary rocks at Eagle crater in Meridiani Planum are composed of fine-grained siliciclastic materials derived from weathering of basaltic rocks, sulfate minerals (including magnesium sulfate and jarosite) that constitute several tens of percent of the rock by weight, and hematite. Cross-stratification observed in rock outcrops indicates eolian and aqueous transport. Diagenetic features include hematite-rich concretions and crystal-mold vugs. We interpret the rocks to be a mixture of chemical and siliciclastic sediments with a complex diagenetic history. The environmental conditions that they record include episodic inundation by shallow surface water, evaporation, and desiccation. The …

research product

The Spirit Rover's Athena science investigation at Gusev Crater, Mars.

The Mars Exploration Rover Spirit and its Athena science payload have been used to investigate a landing site in Gusev crater. Gusev is hypothesized to be the site of a former lake, but no clear evidence for lacustrine sedimentation has been found to date. Instead, the dominant lithology is basalt, and the dominant geologic processes are impact events and eolian transport. Many rocks exhibit coatings and other characteristics that may be evidence for minor aqueous alteration. Any lacustrine sediments that may exist at this location within Gusev apparently have been buried by lavas that have undergone subsequent impact disruption.

research product

Mineralogy of volcanic rocks in Gusev Crater, Mars: Reconciling Mössbauer, Alpha Particle X-ray Spectrometer, and Miniature Thermal Emission Spectrometer spectra

Complete sets of mineral abundances for relatively unaltered volcanic or volcaniclastic rocks in Gusev Crater have been determined by modeling Mössbauer subspectral areas as mineral weight percentages, and combining those percentages with the proportions of iron-free minerals not detected by Mössbauer (normative plagioclase, apatite, and chromite, as calculated from Alpha Particle X-Ray Spectrometer (APXS) chemical analyses). Comparisons of synthetic thermal emission spectra calculated for these mineral modes with measured Miniature Thermal Emission Spectrometer (Mini-TES) spectra for the same rock classes show either good agreements or discrepancies that we attribute to sodic pla…

research product

Two Years at Meridiani Planum: Results from the Opportunity Rover

The Mars Exploration Rover Opportunity has spent more than 2 years exploring Meridiani Planum, traveling ∼8 kilometers and detecting features that reveal ancient environmental conditions. These include well-developed festoon (trough) cross-lamination formed in flowing liquid water, strata with smaller and more abundant hematite-rich concretions than those seen previously, possible relict “hopper crystals” that might reflect the formation of halite, thick weathering rinds on rock surfaces, resistant fracture fills, and networks of polygonal fractures likely caused by dehydration of sulfate salts. Chemical variations with depth show that the siliciclastic fraction of outcrop rock has undergon…

research product

Basaltic Rocks Analyzed by the Spirit Rover in Gusev Crater

The Spirit landing site in Gusev Crater on Mars contains dark, fine-grained, vesicular rocks interpreted as lavas. Pancam and Mini–Thermal Emission Spectrometer (Mini-TES) spectra suggest that all of these rocks are similar but have variable coatings and dust mantles. Magnified images of brushed and abraded rock surfaces show alteration rinds and veins. Rock interiors contain ≤25% megacrysts. Chemical analyses of rocks by the Alpha Particle X-ray Spectrometer are consistent with picritic basalts, containing normative olivine, pyroxenes, plagioclase, and accessory FeTi oxides. Mössbauer, Pancam, and Mini-TES spectra confirm the presence of olivine, magnetite, and probably pyroxene. The…

research product

Provenance and diagenesis of the evaporite-bearing Burns formation, Meridiani Planum, Mars

Abstract Impure reworked evaporitic sandstones, preserved on Meridiani Planum, Mars, are mixtures of roughly equal amounts of altered siliciclastic debris, of basaltic provenance (40 ± 10% by mass), and chemical constituents, dominated by evaporitic minerals (jarosite, Mg-, Ca-sulfates ± chlorides ± Fe-, Na-sulfates), hematite and possibly secondary silica (60 ± 10%). These chemical constituents and their relative abundances are not an equilibrium evaporite assemblage and to a substantial degree have been reworked by aeolian and subaqueous transport. Ultimately they formed by evaporation of acidic waters derived from interaction with olivine-bearing basalts and subsequent diagenetic alterat…

research product

Soils of Eagle crater and Meridiani Planum at the Opportunity Rover landing site.

The soils at the Opportunity site are fine-grained basaltic sands mixed with dust and sulfate-rich outcrop debris. Hematite is concentrated in spherules eroded from the strata. Ongoing saltation exhumes the spherules and their fragments, concentrating them at the surface. Spherules emerge from soils coated, perhaps from subsurface cementation, by salts. Two types of vesicular clasts may represent basaltic sand sources. Eolian ripples, armored by well-sorted hematite-rich grains, pervade Meridiani Planum. The thickness of the soil on the plain is estimated to be about a meter. The flatness and thin cover suggest that the plain may represent the original sedimentary surface.

research product

Characterization and petrologic interpretation of olivine-rich basalts at Gusev Crater, Mars

Rocks on the floor of Gusev crater are basalts of uniform composition and mineralogy. Olivine, the only mineral to have been identified or inferred from data by all instruments on the Spirit rover, is especially abundant in these rocks. These picritic basalts are similar in many respects to certain Martian meteorites (olivine-phyric shergottites). The olivine megacrysts in both have intermediate compositions, with modal abundances ranging up to 20-30%. Associated minerals in both include low-calcium and high-calcium pyroxenes, plagioclase of intermediate composition, iron-titanium-chromium oxides, and phosphate. These rocks also share minor element trends, reflected in their nickel-magnesiu…

research product

Overview of the Opportunity Mars Exploration Rover Mission to Meridiani Planum: Eagle Crater to Purgatory Ripple

The Mars Exploration Rover Opportunity touched down at Meridiani Planum in January 2004 and since then has been conducting observations with the Athena science payload. The rover has traversed more than 5 km, carrying out the first outcrop-scale investigation of sedimentary rocks on Mars. The rocks of Meridiani Planum are sandstones formed by eolian and aqueous reworking of sand grains that are composed of mixed fine-grained siliciclastics and sulfates. The siliciclastic fraction was produced by chemical alteration of a precursor basalt. The sulfates are dominantly Mg-sulfates and also include Ca-sulfates and jarosite. The stratigraphic section observed to date is dominated by eolian bedfor…

research product

Geochemical and mineralogical indicators for aqueous processes in the Columbia Hills of Gusev crater, Mars

[1] Water played a major role in the formation and alteration of rocks and soils in the Columbia Hills. The extent of alteration ranges from moderate to extensive. Five distinct rock compositional classes were identified; the order for degree of alteration is Watchtower ≅ Clovis > Wishstone ≅ Peace > Backstay. The rover's wheels uncovered one unusual soil (Paso Robles) that is the most S-rich material encountered. Clovis class rocks have compositions similar to Gusev plains soil but with higher Mg, Cl, and Br and lower Ca and Zn; Watchtower and Wishstone classes have high Al, Ti, and P and low Cr and Ni; Peace has high Mg and S and low Al, Na, and K; Backstay basalts have high Na and K comp…

research product

Chemistry and mineralogy of outcrops at Meridiani Planum

Analyses of outcrops created by the impact craters Endurance, Fram and Eagle reveal the broad lateral continuity of chemical sediments at the Meridiani Planum exploration site on Mars. Approximately ten mineralogical components are implied in these salt-rich silicic sediments, from measurements by instruments on the Opportunity rover. Compositional trends in an apparently intact vertical stratigraphic sequence at the Karatepe West ingress point at Endurance crater are consistent with non-uniform deposition or with subsequent migration of mobile salt components, dominated by sulfates of magnesium. Striking variations in Cl and enrichments of Br, combined with diversity in sulfate species, pr…

research product

Nickel on Mars: Constraints on meteoritic material at the surface

[1] Impact craters and the discovery of meteorites on Mars indicate clearly that there is meteoritic material at the Martian surface. The Alpha Particle X-ray Spectrometers (APXS) on board the Mars Exploration Rovers measure the elemental chemistry of Martian samples, enabling an assessment of the magnitude of the meteoritic contribution. Nickel, an element that is greatly enhanced in meteoritic material relative to samples of the Martian crust, is directly detected by the APXS and is observed to be geochemically mobile at the Martian surface. Correlations between nickel and other measured elements are used to constrain the quantity of meteoritic material present in Martian soil and sedimen…

research product

An integrated view of the chemistry and mineralogy of martian soils

The mineralogical and elemental compositions of the martian soil are indicators of chemical and physical weathering processes. Using data from the Mars Exploration Rovers, we show that bright dust deposits on opposite sides of the planet are part of a global unit and not dominated by the composition of local rocks. Dark soil deposits at both sites have similar basaltic mineralogies, and could reflect either a global component or the general similarity in the compositions of the rocks from which they were derived. Increased levels of bromine are consistent with mobilization of soluble salts by thin films of liquid water, but the presence of olivine in analysed soil samples indicates that the…

research product

Water alteration of rocks and soils on Mars at the Spirit rover site in Gusev crater

The cover shows part of the Larry's Lookout panorama, seen from the Mars Exploration Rover (MER) Spirit during its drive up Husband Hill: the summit is about 200 metres from the rover. Six papers this week report in detail on the MER mission. An Analysis compares predictions used to select a landing site with the conditions actually encountered. This ‘ground truth’ will be invaluable for interpreting future remote-sensing data. Surface chemistry suggests that the upper layer of soil may contain 1% meteoritic material. MER provides a unique glimpse of solar transits of the moons Phobos and Deimos. Rover Opportunity examined wind-related processes, and spectroscopy indicates a dry origin for …

research product

Pyroclastic Activity at Home Plate in Gusev Crater, Mars

Home Plate is a layered plateau in Gusev crater on Mars. It is composed of clastic rocks of moderately altered alkali basalt composition, enriched in some highly volatile elements. A coarsegrained lower unit lies under a finer-grained upper unit. Textural observations indicate that the lower strata were emplaced in an explosive event, and geochemical considerations favor an explosive volcanic origin over an impact origin. The lower unit likely represents accumulation of pyroclastic materials, whereas the upper unit may represent eolian reworking of the same pyroclastic materials.

research product

Spirit Mars Rover Mission to the Columbia Hills, Gusev Crater: Mission overview and selected results from the Cumberland Ridge to Home Plate

This paper summarizes the Spirit rover operations in the Columbia Hills of Gusev Crater from sols 513 to 1476 and provides an overview of selected findings that focus on synergistic use of the Athena Payload and comparisons to orbital data. Results include discovery of outcrops (Voltaire) on Husband Hill that are interpreted to be altered impact melt deposits that incorporated local materials during emplacement. Evidence for extensive volcanic activity and aqueous alteration in the Inner Basin is also detailed, including discovery and characterization of accretionary lapilli and formation of sulfate, silica, and hematite-rich deposits. Use of Spirit's data to understand the range of spectra…

research product

Bounce Rock-A shergottite-like basalt encountered at Meridiani Planum, Mars

Additional co-authors: Thanasis ECONOMOU, Steven P. GOREVAN, Brian C. HAHN, Gostar KLINGELHOFER, Timothy J. McCOY, Harry Y. McSWEEN Jr, Douglas W. MING, Richard V. MORRIS, Daniel S. RODIONOV, Steven W. SQUYRES, Heinrich WANKE, Shawn P. WRIGHT, Michael B. WYATT, Albert S. YEN

research product

Mixing relationships and the effects of secondary alteration in the Wishstone and Watchtower Classes of Husband Hill, Gusev Crater, Mars

[1] The Wishstone and Watchtower Class rocks on Husband Hill preserve evidence for a geochemical relationship consistent with two-component mixing between a high Al 2 O 3 , TiO 2 , CaO, Na 2 O, P 2 O 5 end-member and a second end-member enriched in the elements MgO, Zn, S, Br, and Cl. The first end-member appears to be reasonably well represented by rocks of the Wishstone Class, while the second end-member is consistent with a chemical component, not represented by any lithology encountered by Spirit. The Watchtower Class appears to be an intermediate in the mixture. The concentration of the redox sensitive elements Fe and Mn display no systematic variation between rock classes, and the Fe-…

research product