0000000000179006

AUTHOR

Carlos A. Vaquera-araujo

Dynamical seesaw mechanism for Dirac neutrinos

So far we have not been able to establish that, as theoretically expected, neutrinos are their own anti-particles. Here we propose a dynamical way to account for the Dirac nature of neutrinos and the smallness of their mass in terms of a new variant of the seesaw paradigm in which the energy scale of neutrino mass generation could be accessible to the current LHC experiments.

research product

Towards gauge coupling unification in left-right symmetric SU(3)c×SU(3)L×SU(3)R×U(1)X theories

We consider the possibility of gauge coupling unification within the simplest realizations of the $\mathrm{SU}(3{)}_{\mathrm{c}}\ifmmode\times\else\texttimes\fi{}\mathrm{SU}(3{)}_{\mathrm{L}}\ifmmode\times\else\texttimes\fi{}\mathrm{SU}(3{)}_{\mathrm{R}}\ifmmode\times\else\texttimes\fi{}\mathrm{U}(1{)}_{\mathrm{X}}$ gauge theory. We present a first exploration of the renormalization group equations governing the ``bottom-up'' evolution of the gauge couplings in a generic model with free normalization for the generators. Interestingly, we find that for a $\mathrm{SU}(3{)}_{\mathrm{c}}\ifmmode\times\else\texttimes\fi{}\mathrm{SU}(3{)}_{\mathrm{L}}\ifmmode\times\else\texttimes\fi{}\mathrm{SU}(…

research product

Lagrangians for Massive Dirac Chiral Superfields

A variant for the superspin one-half massive superparticle in $ 4D $, $ \mathcal{N}=1 $, based on Dirac superfields, is offered. As opposed to the current known models that use spinor chiral superfields, the propagating fields of the supermultiplet are those of the lowest mass dimensions possible: scalar, Dirac and vector fields. Besides the supersymmetric chiral condition, the Dirac superfields are not further constrained, allowing a very straightforward implementation of the path-integral method. The corresponding superpropagators are presented. In addition, an interaction super Yukawa potential, formed by Dirac and scalar chiral superfields, is given in terms of their component fields. T…

research product

Unifying left–right symmetry and 331 electroweak theories

We propose a realistic theory based on the $\mathrm{SU(3)_c \otimes SU(3)_L \otimes SU(3)_R \otimes U(1)_{X}}$ gauge group which requires the number of families to match the number of colors. In the simplest realization neutrino masses arise from the canonical seesaw mechanism and their smallness correlates with the observed V-A nature of the weak force. Depending on the symmetry breaking path to the Standard Model one recovers either a left-right symmetric theory or one based on the $\mathrm{SU(3)_c \otimes SU(3)_L \otimes U(1)}$ symmetry as the "next" step towards new physics.

research product

Scotogenic dark matter stability from gauged matter parity

We explore the idea that dark matter stability results from the presence of a matter-parity symmetry, arising naturally as a consequence of the spontaneous breaking of an extended $\mathrm{SU(3) \otimes SU(3)_L \otimes U(1)_X \otimes U(1)_{N}}$ electroweak gauge symmetry with fully gauged B-L. Using this framework we construct a theory for scotogenic dark matter and analyze its main features.

research product

Dark matter stability from Dirac neutrinos in scotogenic 3-3-1-1 theory

We propose the simplest TeV-scale scotogenic extension of the original 3-3-1 theory, where dark matter stability is linked to the Dirac nature of neutrinos, which results from an unbroken $B-L$ gauge symmetry. The new gauge bosons get masses through the interplay of spontaneous symmetry breaking \`a la Higgs and the Stueckelberg mechanism.

research product

Flavour and CP predictions from orbifold compactification

We propose a theory for fermion masses and mixings in which an $A_4$ family symmetry arises naturally from a six-dimensional spacetime after orbifold compactification. The flavour symmetry leads to the successful "golden" quark-lepton unification formula. The model reproduces oscillation parameters with good precision, giving sharp predictions for the CP violating phases of quarks and leptons, in particular $\delta^\ell \simeq +268 ^\circ$. The effective neutrinoless double-beta decay mass parameter is also sharply predicted as $\langle m_{\beta\beta}\rangle \simeq 2.65\ meV$.

research product

A Model of Comprehensive Unification

Comprehensive – that is, gauge and family – unification using spinors has many attractive features, but it has been challenged to explain chirality. Here, by combining an orbifold construction with more traditional ideas, we address that difficulty. Our candidate model features three chiral families and leads to an acceptable result for quantitative unification of couplings. A potential target for accelerator and astronomical searches emerges.

research product

Reloading the Axion in a 3-3-1 setup

We generalize the idea of the axion to an extended electroweak gauge symmetry setup. We propose a minimal axion extension of the Singer-Valle-Schechter (SVS) theory, in which the standard model fits in $\mathrm{SU(3)_L\otimes U(1)_X}$, the number of families results from anomaly cancellation, and the Peccei-Quinn (PQ) solution to the strong-CP problem is implemented. Neutrino masses arise from a type-I Dirac seesaw mechanism, suppressed by the ratio of SVS and PQ scales, suggesting the existence of new physics at a moderate SVS scale. Novel features include an enhanced axion coupling to photons when compared to the DFSZ axion, as well as flavour-changing axion couplings to quarks.

research product

Simple theory for scotogenic dark matter with residual matter-parity

Dark matter stability can result from a residual matter-parity symmetry surviving spontaneous breaking of an extended gauge symmetry. We propose the simplest scotogenic dark matter completion of the original SVS theory (Phys.Rev. D22 (1980) 738), in which the "dark sector" particles as well as matter-parity find a natural theoretical origin in the model. We briefly comment on its main features.

research product

Scotogenic dark matter and Dirac neutrinos from unbroken gauged B − L symmetry

We propose a simple extension of the standard model where neutrinos get naturally small “scotogenic” Dirac masses from an unbroken gauged B−L symmetry, ensuring dark matter stability. The associated gauge boson gets mass through the Stueckelberg mechanism. Two scenarios are identified, and the resulting phenomenology briefly sketched.

research product