0000000000179083

AUTHOR

Laurence A. Soderblom

showing 3 related works from this author

The Opportunity Rover's Athena Science Investigation at Meridiani Planum, Mars

2004

The Mars Exploration Rover Opportunity has investigated the landing site in Eagle crater and the nearby plains within Meridiani Planum. The soils consist of fine-grained basaltic sand and a surface lag of hematite-rich spherules, spherule fragments, and other granules. Wind ripples are common. Underlying the thin soil layer, and exposed within small impact craters and troughs, are flat-lying sedimentary rocks. These rocks are finely laminated, are rich in sulfur, and contain abundant sulfate salts. Small-scale cross-lamination in some locations provides evidence for deposition in flowing liquid water. We interpret the rocks to be a mixture of chemical and siliciclastic sediments formed by e…

Meridiani PlanumGeologic SedimentsMineralsMultidisciplinaryExtraterrestrial EnvironmentAtmosphereSilicatesGeochemistryMarsWaterMineralogyWindMars Exploration Programengineering.materialFerric CompoundsDiagenesisImpact craterConcretionengineeringSiliciclasticSedimentary rockComposition of MarsSpacecraftEvolution PlanetaryGeologyScience
researchProduct

Opportunity Mars Rover mission: Overview and selected results from Purgatory ripple to traverses to Endeavour crater

2011

Opportunity has been traversing the Meridiani plains since 25 January 2004 (sol 1), acquiring numerous observations of the atmosphere, soils, and rocks. This paper provides an overview of key discoveries between sols 511 and 2300, complementing earlier papers covering results from the initial phases of the mission. Key new results include (1) atmospheric argon measurements that demonstrate the importance of atmospheric transport to and from the winter carbon dioxide polar ice caps; (2) observations showing that aeolian ripples covering the plains were generated by easterly winds during an epoch with enhanced Hadley cell circulation; (3) the discovery and characterization of cobbles and boul…

Atmospheric ScienceEcologyEarth sciencePaleontologySoil ScienceMars exploration roverForestryAquatic ScienceOceanographyAstrobiologyMars roverGeophysicsImpact craterSpace and Planetary ScienceGeochemistry and PetrologyEarth and Planetary Sciences (miscellaneous)PurgatoryGeologyEarth-Surface ProcessesWater Science and Technology
researchProduct

Provenance and diagenesis of the evaporite-bearing Burns formation, Meridiani Planum, Mars

2005

Abstract Impure reworked evaporitic sandstones, preserved on Meridiani Planum, Mars, are mixtures of roughly equal amounts of altered siliciclastic debris, of basaltic provenance (40 ± 10% by mass), and chemical constituents, dominated by evaporitic minerals (jarosite, Mg-, Ca-sulfates ± chlorides ± Fe-, Na-sulfates), hematite and possibly secondary silica (60 ± 10%). These chemical constituents and their relative abundances are not an equilibrium evaporite assemblage and to a substantial degree have been reworked by aeolian and subaqueous transport. Ultimately they formed by evaporation of acidic waters derived from interaction with olivine-bearing basalts and subsequent diagenetic alterat…

Meridiani PlanumProvenanceEvaporiteGeochemistryHematiteCementation (geology)DiagenesisGeophysicsSpace and Planetary ScienceGeochemistry and Petrologyvisual_artEarth and Planetary Sciences (miscellaneous)visual_art.visual_art_mediumSiliciclasticSedimentologyGeologyEarth and Planetary Science Letters
researchProduct