0000000000179084

AUTHOR

Rudolf Rieder

showing 13 related works from this author

The Opportunity Rover's Athena Science Investigation at Meridiani Planum, Mars

2004

The Mars Exploration Rover Opportunity has investigated the landing site in Eagle crater and the nearby plains within Meridiani Planum. The soils consist of fine-grained basaltic sand and a surface lag of hematite-rich spherules, spherule fragments, and other granules. Wind ripples are common. Underlying the thin soil layer, and exposed within small impact craters and troughs, are flat-lying sedimentary rocks. These rocks are finely laminated, are rich in sulfur, and contain abundant sulfate salts. Small-scale cross-lamination in some locations provides evidence for deposition in flowing liquid water. We interpret the rocks to be a mixture of chemical and siliciclastic sediments formed by e…

Meridiani PlanumGeologic SedimentsMineralsMultidisciplinaryExtraterrestrial EnvironmentAtmosphereSilicatesGeochemistryMarsWaterMineralogyWindMars Exploration Programengineering.materialFerric CompoundsDiagenesisImpact craterConcretionengineeringSiliciclasticSedimentary rockComposition of MarsSpacecraftEvolution PlanetaryGeologyScience
researchProduct

The Spirit Rover's Athena science investigation at Gusev Crater, Mars.

2004

The Mars Exploration Rover Spirit and its Athena science payload have been used to investigate a landing site in Gusev crater. Gusev is hypothesized to be the site of a former lake, but no clear evidence for lacustrine sedimentation has been found to date. Instead, the dominant lithology is basalt, and the dominant geologic processes are impact events and eolian transport. Many rocks exhibit coatings and other characteristics that may be evidence for minor aqueous alteration. Any lacustrine sediments that may exist at this location within Gusev apparently have been buried by lavas that have undergone subsequent impact disruption.

BasaltgeographyGeologic SedimentsGeological PhenomenaMineralsMultidisciplinarygeography.geographical_feature_categoryExtraterrestrial EnvironmentLithologyAtmosphereMarsWaterGeologyMars Exploration ProgramWindGeologic SedimentsAstrobiologyVolcanic rockIgneous rockMagneticsImpact craterComposition of MarsGeologyScience (New York, N.Y.)
researchProduct

Athena Mars rover science investigation

2003

[1] Each Mars Exploration Rover carries an integrated suite of scientific instruments and tools called the Athena science payload. The primary objective of the Athena science investigation is to explore two sites on the Martian surface where water may once have been present, and to assess past environmental conditions at those sites and their suitability for life. The remote sensing portion of the payload uses a mast called the Pancam Mast Assembly (PMA) that provides pointing for two instruments: the Panoramic Camera (Pancam), and the Miniature Thermal Emission Spectrometer (Mini-TES). Pancam provides high-resolution, color, stereo imaging, while Mini-TES provides spectral cubes at mid-inf…

MartianScientific instrumentMeridiani PlanumAtmospheric ScienceThermal Emission SpectrometerEcologySpectrometerPaleontologySoil ScienceForestryAquatic ScienceOceanographyMars roverGeophysicsStereo imagingSpace and Planetary ScienceGeochemistry and PetrologyMartian surfaceEarth and Planetary Sciences (miscellaneous)GeologyEarth-Surface ProcessesWater Science and TechnologyRemote sensingJournal of Geophysical Research: Planets
researchProduct

Basaltic Rocks Analyzed by the Spirit Rover in Gusev Crater

2004

The Spirit landing site in Gusev Crater on Mars contains dark, fine-grained, vesicular rocks interpreted as lavas. Pancam and Mini–Thermal Emission Spectrometer (Mini-TES) spectra suggest that all of these rocks are similar but have variable coatings and dust mantles. Magnified images of brushed and abraded rock surfaces show alteration rinds and veins. Rock interiors contain ≤25% megacrysts. Chemical analyses of rocks by the Alpha Particle X-ray Spectrometer are consistent with picritic basalts, containing normative olivine, pyroxenes, plagioclase, and accessory FeTi oxides. Mössbauer, Pancam, and Mini-TES spectra confirm the presence of olivine, magnetite, and probably pyroxene. The…

Geologic SedimentsExtraterrestrial EnvironmentMagnesium CompoundsMarsMineralogyPyroxeneengineering.materialFeldsparSpectroscopy MossbauerPlagioclaseComposition of MarsBasaltMineralsgeographyMultidisciplinarygeography.geographical_feature_categoryOlivineSilicatesSpectrum AnalysisWaterOxidesVolcanic rockIgneous rockvisual_artengineeringvisual_art.visual_art_mediumIron CompoundsGeologyScience
researchProduct

Soils of Eagle crater and Meridiani Planum at the Opportunity Rover landing site.

2004

The soils at the Opportunity site are fine-grained basaltic sands mixed with dust and sulfate-rich outcrop debris. Hematite is concentrated in spherules eroded from the strata. Ongoing saltation exhumes the spherules and their fragments, concentrating them at the surface. Spherules emerge from soils coated, perhaps from subsurface cementation, by salts. Two types of vesicular clasts may represent basaltic sand sources. Eolian ripples, armored by well-sorted hematite-rich grains, pervade Meridiani Planum. The thickness of the soil on the plain is estimated to be about a meter. The flatness and thin cover suggest that the plain may represent the original sedimentary surface.

Meridiani PlanumRover Landing SiteGeologic SedimentsMineralsMultidisciplinaryExtraterrestrial EnvironmentOutcropSilicatesSpectrum AnalysisGeochemistryMineralogyMarsWaterHematiteFerric CompoundsImpact craterClastic rockvisual_artvisual_art.visual_art_mediumAeolian processesSedimentary rockMeridiani PlanumSpacecraftGraded beddingGeologyScience (New York, N.Y.)
researchProduct

Magnetic Properties Experiments on the Mars Exploration Rover Spirit at Gusev Crater

2004

The magnetic properties experiments are designed to help identify the magnetic minerals in the dust and rocks on Mars—and to determine whether liquid water was involved in the formation and alteration of these magnetic minerals. Almost all of the dust particles suspended in the martian atmosphere must contain ferrimagnetic minerals (such as maghemite or magnetite) in an amount of ∼2% by weight. The most magnetic fraction of the dust appears darker than the average dust. Magnetite was detected in the first two rocks ground by Spirit.

Geologic SedimentsMineralsMultidisciplinaryExtraterrestrial EnvironmentMagnetic mineralsAtmosphereIronSpinelMarsWaterMaghemiteMineralogyOxidesMars Exploration ProgramAtmosphere of Marsengineering.materialFerrosoferric OxideMagneticschemistry.chemical_compoundImpact craterchemistryFerrimagnetismengineeringGeologyMagnetite
researchProduct

Characterization and petrologic interpretation of olivine-rich basalts at Gusev Crater, Mars

2006

Rocks on the floor of Gusev crater are basalts of uniform composition and mineralogy. Olivine, the only mineral to have been identified or inferred from data by all instruments on the Spirit rover, is especially abundant in these rocks. These picritic basalts are similar in many respects to certain Martian meteorites (olivine-phyric shergottites). The olivine megacrysts in both have intermediate compositions, with modal abundances ranging up to 20-30%. Associated minerals in both include low-calcium and high-calcium pyroxenes, plagioclase of intermediate composition, iron-titanium-chromium oxides, and phosphate. These rocks also share minor element trends, reflected in their nickel-magnesiu…

Atmospheric ScienceGeochemistrySoil SciencePyroxeneAquatic Scienceengineering.materialOceanographyGeochemistry and PetrologyEarth and Planetary Sciences (miscellaneous)PlagioclaseIntermediate compositionAchondriteEarth-Surface ProcessesWater Science and TechnologyBasaltgeographyOlivinegeography.geographical_feature_categoryEcologyPaleontologyForestryVolcanic rockIgneous rockGeophysicsSpace and Planetary ScienceengineeringGeologyJournal of Geophysical Research: Planets
researchProduct

Overview of the Opportunity Mars Exploration Rover Mission to Meridiani Planum: Eagle Crater to Purgatory Ripple

2006

The Mars Exploration Rover Opportunity touched down at Meridiani Planum in January 2004 and since then has been conducting observations with the Athena science payload. The rover has traversed more than 5 km, carrying out the first outcrop-scale investigation of sedimentary rocks on Mars. The rocks of Meridiani Planum are sandstones formed by eolian and aqueous reworking of sand grains that are composed of mixed fine-grained siliciclastics and sulfates. The siliciclastic fraction was produced by chemical alteration of a precursor basalt. The sulfates are dominantly Mg-sulfates and also include Ca-sulfates and jarosite. The stratigraphic section observed to date is dominated by eolian bedfor…

Meridiani PlanumAtmospheric ScienceEarth scienceGeochemistrySoil ScienceAquatic Scienceengineering.materialOceanographyGeochemistry and PetrologyConcretionStratigraphic sectionEarth and Planetary Sciences (miscellaneous)Earth-Surface ProcessesWater Science and Technologygeographygeography.geographical_feature_categoryEcologyBedrockPaleontologyForestryMars Exploration ProgramGeophysicsSpace and Planetary ScienceengineeringAeolian processesSiliciclasticSedimentary rockGeologyJournal of Geophysical Research: Planets
researchProduct

Indication of drier periods on Mars from the chemistry and mineralogy of atmospheric dust

2005

The cover shows part of the Larry's Lookout panorama, seen from the Mars Exploration Rover (MER) Spirit during its drive up Husband Hill: the summit is about 200 metres from the rover. Six papers this week report in detail on the MER mission. An Analysis compares predictions used to select a landing site with the conditions actually encountered. This ‘ground truth’ will be invaluable for interpreting future remote-sensing data. Surface chemistry suggests that the upper layer of soil may contain 1% meteoritic material. MER provides a unique glimpse of solar transits of the moons Phobos and Deimos. Rover Opportunity examined wind-related processes, and spectroscopy indicates a dry origin for …

Moons of MarsBasaltMultidisciplinaryImpact craterDust stormMineralogyContext (language use)Mars Exploration ProgramAtmosphere of MarsExploration of MarsAstrobiologyNature
researchProduct

Chemistry and mineralogy of outcrops at Meridiani Planum

2005

Analyses of outcrops created by the impact craters Endurance, Fram and Eagle reveal the broad lateral continuity of chemical sediments at the Meridiani Planum exploration site on Mars. Approximately ten mineralogical components are implied in these salt-rich silicic sediments, from measurements by instruments on the Opportunity rover. Compositional trends in an apparently intact vertical stratigraphic sequence at the Karatepe West ingress point at Endurance crater are consistent with non-uniform deposition or with subsequent migration of mobile salt components, dominated by sulfates of magnesium. Striking variations in Cl and enrichments of Br, combined with diversity in sulfate species, pr…

Meridiani PlanumOutcropGeochemistrySilicicMineralogychemistry.chemical_compoundIgneous rockGeophysicschemistryImpact craterSpace and Planetary ScienceGeochemistry and PetrologyEarth and Planetary Sciences (miscellaneous)Sedimentary rockSulfateMaficGeologyEarth and Planetary Science Letters
researchProduct

Bounce Rock-A shergottite-like basalt encountered at Meridiani Planum, Mars

2011

Additional co-authors: Thanasis ECONOMOU, Steven P. GOREVAN, Brian C. HAHN, Gostar KLINGELHOFER, Timothy J. McCOY, Harry Y. McSWEEN Jr, Douglas W. MING, Richard V. MORRIS, Daniel S. RODIONOV, Steven W. SQUYRES, Heinrich WANKE, Shawn P. WRIGHT, Michael B. WYATT, Albert S. YEN

BasaltMeridiani PlanumGeophysicsWater on MarsSpace and Planetary ScienceComposition of MarsMars Exploration ProgramGeologyAstrobiologyMeteoritics & Planetary Science
researchProduct

Alpha Particle X-Ray Spectrometer (APXS): Results from Gusev crater and calibration report

2006

The chemical composition of rocks and soils on Mars analyzed during the Mars Exploration Rover Spirit Mission was determined by X-ray analyses with the Alpha Particle X-Ray Spectrometer (APXS). Details of the data analysis method and the instrument calibration are presented. Measurements performed on Mars to address geometry effects and background contributions are shown. Cross calibration measurements among several instrument sensors and sources are discussed. An unintentional swap of the two flight instruments is evaluated. New concentration data acquired during the first 470 sols of rover Spirit in Gusev Crater are presented. There are two geological regions, the Gusev plains and the Col…

Meridiani PlanumAtmospheric Sciencegeographygeography.geographical_feature_categoryEcologyPaleontologySoil ScienceMineralogyForestryWeatheringMars Exploration ProgramAquatic ScienceAlpha particle X-ray spectrometerOceanographyVolcanic rockGeophysicsImpact craterSpace and Planetary ScienceGeochemistry and PetrologyRocknestEarth and Planetary Sciences (miscellaneous)Composition of MarsGeologyEarth-Surface ProcessesWater Science and TechnologyJournal of Geophysical Research: Planets
researchProduct

The new Athena alpha particle X-ray spectrometer for the Mars Exploration Rovers

2003

[1] The new alpha particle X-ray spectrometer (APXS) is part of the Athena payload of the two Mars Exploration Rovers (MER). The APXS sensor head is attached to the turret of the instrument deployment device (IDD) of the rover. The APXS is a very light-weight instrument for determining the major and minor elemental composition of Martian soils, rocks, and other geological materials at the MER landing sites. The sensor head has simply to be docked by the IDD on the surface of the selected sample. X-ray radiation, excited by alpha particles and X rays of the radioactive sources, is recorded by a high-resolution X-ray detector. The X-ray spectra show elements starting from sodium up to yttrium…

MartianMeridiani PlanumAtmospheric ScienceEcologySpectrometerPaleontologySoil ScienceMineralogyForestryAlpha particleMars Exploration ProgramAquatic ScienceAlpha particle X-ray spectrometerOceanographyExploration of MarsAstrobiologyGeophysicsSpace and Planetary ScienceGeochemistry and PetrologyEarth and Planetary Sciences (miscellaneous)Composition of MarsGeologyEarth-Surface ProcessesWater Science and TechnologyJournal of Geophysical Research: Planets
researchProduct