0000000000179378

AUTHOR

Viktor Malanushenko

The Baryon Oscillation Spectroscopic Survey of SDSS-III

The Baryon Oscillation Spectroscopic Survey (BOSS) is designed to measure the scale of baryon acoustic oscillations (BAO) in the clustering of matter over a larger volume than the combined efforts of all previous spectroscopic surveys of large-scale structure. BOSS uses 1.5 million luminous galaxies as faint as i = 19.9 over 10,000 deg(2) to measure BAO to redshifts z < 0.7. Observations of neutral hydrogen in the Ly alpha forest in more than 150,000 quasar spectra (g < 22) will constrain BAO over the redshift range 2.15 < z < 3.5. Early results from BOSS include the first detection of the large-scale three-dimensional clustering of the Ly alpha forest and a strong detection from the Data R…

research product

The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Baryon Acoustic Oscillations in the Data Release 9 Spectroscopic Galaxy Sample

This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2012 RAS © 2012 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.

research product

New Neutrino Mass Bounds from SDSS-III Data Release 8 Photometric Luminous Galaxies

We present neutrino mass bounds using 900,000 luminous galaxies with photometric redshifts measured from Sloan Digital Sky Survey III Data Release 8. The galaxies have photometric redshifts between z = 0.45 and z = 0.65 and cover 10,000 deg(2), thus probing a volume of 3 h(-3) Gpc(3) and enabling tight constraints to be derived on the amount of dark matter in the form of massive neutrinos. A new bound on the sum of neutrino masses Sigma m nu < 0.27 eV, at the 95% confidence level (CL), is obtained after combining our sample of galaxies, which we call CMASS with Wilkinson Microwave Anisotropy Probe (WMAP) seven-year cosmic microwave background data and the most recent measurement of the Hubb…

research product

SDSS-III: Massive Spectroscopic Surveys of the Distant Universe, the Milky Way Galaxy, and Extra-Solar Planetary Systems

Building on the legacy of the Sloan Digital Sky Survey (SDSS-I and II), SDSS-III is a program of four spectroscopic surveys on three scientific themes: dark energy and cosmological parameters, the history and structure of the Milky Way, and the population of giant planets around other stars. In keeping with SDSS tradition, SDSS-III will provide regular public releases of all its data, beginning with SDSS DR8 (which occurred in Jan 2011). This paper presents an overview of the four SDSS-III surveys. BOSS will measure redshifts of 1.5 million massive galaxies and Lya forest spectra of 150,000 quasars, using the BAO feature of large scale structure to obtain percent-level determinations of the…

research product

Clustering of Sloan Digital Sky Survey III Photometric Luminous Galaxies: The Measurement, Systematics and Cosmological Implications

The Sloan Digital Sky Survey (SDSS) surveyed 14,555 square degrees, and delivered over a trillion pixels of imaging data. We present a study of galaxy clustering using 900,000 luminous galaxies with photometric redshifts, spanning between $z=0.45$ and $z=0.65$, constructed from the SDSS using methods described in Ross et al. (2011). This data-set spans 11,000 square degrees and probes a volume of $3h^{-3} \rm{Gpc}^3$, making it the largest volume ever used for galaxy clustering measurements. We present a novel treatment of the observational systematics and its applications to the clustering signals from the data set. In this paper, we measure the angular clustering using an optimal quadrati…

research product

Chemical Cartography with APOGEE: Multi-element Abundance Ratios

We map the trends of elemental abundance ratios across the Galactic disk, spanning R = 3-15 kpc and midplane distance |Z|= 0-2 kpc, for 15 elements in a sample of 20,485 stars measured by the SDSS/APOGEE survey (O, Na, Mg, Al, Si, P, S, K, Ca, V, Cr, Mn, Fe, Co, Ni). Adopting Mg rather than Fe as our reference element, and separating stars into two populations based on [Fe/Mg], we find that the median trends of [X/Mg] vs. [Mg/H] in each population are nearly independent of location in the Galaxy. The full multi-element cartography can be summarized by combining these nearly universal median sequences with our measured metallicity distribution functions and the relative proportions of the lo…

research product