Neural Network Emulation of Synthetic Hyperspectral Sentinel-2-Like Imagery With Uncertainty
Hyperspectral satellite imagery provides highly-resolved spectral information for large areas and can provide vital information. However, only a few imaging spectrometer missions are currently in operation. Aiming to generate synthetic satellite-based hyperspectral imagery potentially covering any region, we explored the possibility of applying statistical learning, i.e. emulation. Based on the relationship of a Sentinel-2 (S2) scene and a hyperspectral HyPlant airborne image, this work demonstrates the possibility to emulate a hyperspectral S2-like image. We tested the role of different machine learning regression algorithms (MLRA) and varied the image-extracted training dataset size. We f…