0000000000179764

AUTHOR

Rebecca C. Wade

0000-0001-5951-8670

showing 2 related works from this author

Heterodimer formation of wild-type and amyotrophic lateral sclerosis-causing mutant Cu/Zn-superoxide dismutase induces toxicity independent of protei…

2008

Recent studies provide evidence that wild-type Cu/Zn-superoxide dismutase (SOD1(hWT)) might be an important factor in mutant SOD1-mediated amyotrophic lateral sclerosis (ALS). In order to investigate its functional role in the pathogenesis of ALS, we designed fusion proteins of two SOD1 monomers linked by a polypeptide. We demonstrated that wild-type-like mutants, but not SOD1(G85R) homodimers, as well as mutant heterodimers including SOD1(G85R)-SOD1(hWT) display dismutase activity. Mutant homodimers showed an increased aggregation compared with the corresponding heterodimers in cell cultures and transgenic Caenorhabditis elegans, although SOD1(G85R) heterodimers are more toxic in functiona…

Cell SurvivalRecombinant Fusion Proteinsanimal diseasesSOD1MutantProtein aggregationAnimals Genetically ModifiedProtein CarbonylationSuperoxide dismutaseMicechemistry.chemical_compoundSuperoxide Dismutase-1Cell Line TumorGeneticsAnimalsHumansAmino Acid SequenceCaenorhabditis elegansMolecular BiologyGenetics (clinical)Motor NeuronsbiologySuperoxide DismutaseSuperoxideAmyotrophic Lateral SclerosisWild typenutritional and metabolic diseasesHydrogen PeroxideGeneral MedicineFusion proteinProtein Structure Tertiarynervous system diseasesCell biologyAmino Acid Substitutionnervous systemchemistryBiochemistrybiology.proteinDismutaseDimerizationHuman Molecular Genetics
researchProduct

The HMGB1 protein induces a metabolic type of tumour cell death by blocking aerobic respiration

2016

The high-mobility group box 1 (HMGB1) protein has a central role in immunological antitumour defense. Here we show that natural killer cell-derived HMGB1 directly eliminates cancer cells by triggering metabolic cell death. HMGB1 allosterically inhibits the tetrameric pyruvate kinase isoform M2, thus blocking glucose-driven aerobic respiration. This results in a rapid metabolic shift forcing cells to rely solely on glycolysis for the maintenance of energy production. Cancer cells can acquire resistance to HMGB1 by increasing glycolysis using the dimeric form of PKM2, and employing glutaminolysis. Consistently, we observe an increase in the expression of a key enzyme of glutaminolysis, malic …

0301 basic medicineProgrammed cell deathThyroid HormonesCellular respirationScienceCell RespirationMalic enzymeGeneral Physics and Astronomychemical and pharmacologic phenomenaPKM2BiologyGeneral Biochemistry Genetics and Molecular BiologyArticle03 medical and health sciencesCell Line TumorHumansGlycolysisHMGB1 ProteinMultidisciplinaryGlutaminolysisCell DeathQMembrane ProteinsGeneral ChemistryCell biology030104 developmental biologyGlucoseCancer cellColonic NeoplasmsCarrier ProteinsGlycolysisPyruvate kinaseNature Communications
researchProduct