The NMR structure of the sensory domain of the membranous two-component fumarate sensor (histidine protein kinase) DcuS of Escherichia coli
The structure of the water-soluble, periplasmic domain of the fumarate sensor DcuS (DcuS-pd) has been determined by NMR spectroscopy in solution. DcuS is a prototype for a sensory histidine kinase with transmembrane signal transfer. DcuS belongs to the CitA family of sensors that are specific for sensing di- and tricarboxylates. The periplasmic domain is folded autonomously and shows helices at the N and the C terminus, suggesting direct linking or connection to helices in the two transmembrane regions. The structure constitutes a novel fold. The nearest structural neighbor is the Per-Arnt-Sim domain of the photoactive yellow protein that binds small molecules covalently. Residues Arg107, H…
The geological CO2degassing history of a long-lived caldera
The majority of the ~100 Holocene calderas on Earth host vigorously active hydrothermal systems, the heat and volatile budgets of which are sustained by degassing of deeply stored magma. Calderas may thus contribute a nontrivial, although poorly quantified, fraction of the global budget of magmatic volatiles such as CO2. Here we use original isotopic a d petrological results from Campi Flegrei volcano, Italy, to propose that hydrothermal calcites are natural mineral archives for the magmatic CO2 that reacted with reservoir rocks during the geological history of a caldera. We show that Campi Flegrei calcites, identified in core samples extracted from 3-km-deep geothermal wells, formed at iso…