0000000000180293

AUTHOR

Christian Storm

showing 2 related works from this author

Change in dominance determines herbivore effects on plant biodiversity

2018

Herbivores alter plant biodiversity (species richness) in many of the world’s ecosystems, but the magnitude and the direction of herbivore effects on biodiversity vary widely within and among ecosystems. One current theory predicts that herbivores enhance plant biodiversity at high productivity but have the opposite effect at low productivity. Yet, empirical support for the importance of site productivity as a mediator of these herbivore impacts is equivocal. Here, we synthesize data from 252 large-herbivore exclusion studies, spanning a 20-fold range in site productivity, to test an alternative hypothesis—that herbivore-induced changes in the competitive environment determine the response …

0106 biological sciences010504 meteorology & atmospheric sciencesIMPACTBiodiversity01 natural sciencesGrasslandRICHNESS2. Zero hungerarotMammalsgeography.geographical_feature_categoryPRODUCTIVITYEcologykasvillisuuseliöyhteisötBiodiversityPlantsGrasslandekologiaGrazingkasvinsyöjätinternationalDIVERSITY DEPENDS[SDE]Environmental SciencesDesert ClimateCIENCIAS NATURALES Y EXACTASCONSUMERnurmetBiologyECOLOGY010603 evolutionary biologyEnvironmental scienceCiencias BiológicasHigh productivitysavannitDominance (ecology)AnimalsEcosystemCommunity ecologyHerbivoryLife Below WaterEcology Evolution Behavior and Systematics0105 earth and related environmental sciencesHerbivoregeographyEcología15. Life on landHerbaceous plantRESOURCE CONTROLbiodiversiteettiMeta-analysisMedio Ambiente13. Climate actionSpecies richnessVEGETATIONCOMMUNITIEScommunity ecology
researchProduct

The phase diagram of Ti-6Al-4V at high-pressures and high-temperatures.

2020

Abstract We report results from a series of diamond-anvil-cell synchrotron x-ray diffraction and large-volume-press experiments, and calculations, to investigate the phase diagram of commercial polycrystalline high-strength Ti-6Al-4V alloy in pressure–temperature space. Up to ∼30 GPa and 886 K, Ti-6Al-4V is found to be stable in the hexagonal-close-packed, or α phase. The effect of temperature on the volume expansion and compressibility of α–Ti-6Al-4V is modest. The martensitic α → ω (hexagonal) transition occurs at ∼30 GPa, with both phases coexisting until at ∼38–40 GPa the transition to the ω phase is completed. Between 300 K and 844 K the α → ω transition appears to be independent of te…

Materials scienceTriple pointThermodynamics02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesOmegaHysteresisMartensitePhase (matter)0103 physical sciencesX-ray crystallographyGeneral Materials ScienceCrystallite010306 general physics0210 nano-technologyPhase diagramJournal of physics. Condensed matter : an Institute of Physics journal
researchProduct